Abstract

The far infrared optical constants of four crystalline materials at room temperature and at 1.5 K are reported. The materials are crystal quartz, sapphire, germanium, and silicon. The first two of these are birefringent (uniaxial) and both sets of optical constants are reported. The measurements extend over the range from 30 cm−1 to 350 cm−1.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Loewenstein, D. R. Smith, Appl. Opt. 10, 577 (1971).
    [CrossRef] [PubMed]
  2. E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967).
    [CrossRef]
  3. E. E. Russell, E. E. Bell, J. Opt. Soc. Am. 57, 543 (1967).
    [CrossRef] [PubMed]
  4. C. M. Randall, R. D. Rawcliffe, Appl. Opt. 6, 1889 (1967).
    [CrossRef] [PubMed]
  5. Y. Yamada, A. Mitsuishi, H. Yoshinaga, J. Opt. Soc. Am. 52, 17 (1962).
    [CrossRef]
  6. M. Hass, M. O’Hara, Appl. Opt. 4, 1027 (1965).
    [CrossRef]
  7. E. V. Loewenstein, A. Engelsrath, J. Phys. 28, Supp. C-2, 153 (1967).
  8. D. F. Gibbons, Phys. Rev. 112, 136 (1968).
    [CrossRef]
  9. Richard K. Kirby, National Bureau of Standards; private communication.
  10. A. Schauer, Can. J. Phys. 43, 523 (1965).
    [CrossRef]
  11. B. D. Saksena, Proc. Ind. Acad. Sci. 12A, 93 (1940).
  12. A. Hadni, Comp. Rend. 257, 398 (1963).
  13. E. E. Bell, Ohio State University; private communication.
  14. A. Hadni, University of Nancy; private communication.

1971 (1)

1968 (1)

D. F. Gibbons, Phys. Rev. 112, 136 (1968).
[CrossRef]

1967 (4)

1965 (2)

1963 (1)

A. Hadni, Comp. Rend. 257, 398 (1963).

1962 (1)

1940 (1)

B. D. Saksena, Proc. Ind. Acad. Sci. 12A, 93 (1940).

Bell, E. E.

Engelsrath, A.

E. V. Loewenstein, A. Engelsrath, J. Phys. 28, Supp. C-2, 153 (1967).

Gibbons, D. F.

D. F. Gibbons, Phys. Rev. 112, 136 (1968).
[CrossRef]

Hadni, A.

A. Hadni, Comp. Rend. 257, 398 (1963).

A. Hadni, University of Nancy; private communication.

Hass, M.

Kirby, Richard K.

Richard K. Kirby, National Bureau of Standards; private communication.

Loewenstein, E. V.

E. V. Loewenstein, D. R. Smith, Appl. Opt. 10, 577 (1971).
[CrossRef] [PubMed]

E. V. Loewenstein, A. Engelsrath, J. Phys. 28, Supp. C-2, 153 (1967).

Mitsuishi, A.

O’Hara, M.

Randall, C. M.

Rawcliffe, R. D.

Russell, E. E.

Saksena, B. D.

B. D. Saksena, Proc. Ind. Acad. Sci. 12A, 93 (1940).

Schauer, A.

A. Schauer, Can. J. Phys. 43, 523 (1965).
[CrossRef]

Smith, D. R.

Yamada, Y.

Yoshinaga, H.

Appl. Opt. (3)

Can. J. Phys. (1)

A. Schauer, Can. J. Phys. 43, 523 (1965).
[CrossRef]

Comp. Rend. (1)

A. Hadni, Comp. Rend. 257, 398 (1963).

J. Opt. Soc. Am. (3)

J. Phys. (1)

E. V. Loewenstein, A. Engelsrath, J. Phys. 28, Supp. C-2, 153 (1967).

Phys. Rev. (1)

D. F. Gibbons, Phys. Rev. 112, 136 (1968).
[CrossRef]

Proc. Ind. Acad. Sci. (1)

B. D. Saksena, Proc. Ind. Acad. Sci. 12A, 93 (1940).

Other (3)

E. E. Bell, Ohio State University; private communication.

A. Hadni, University of Nancy; private communication.

Richard K. Kirby, National Bureau of Standards; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Liquid helium-cooled bolometer and sample holder.

Fig. 2
Fig. 2

Refractive indices of crystal quartz at 1.5 K. Solid curve, ordinary ray; dashed curve: extraordinary ray.

Fig. 3
Fig. 3

Absorption coefficients of crystal quartz at 1.5 K. Solid curve, ordinary ray; dashed curve, extraordinary ray.

Fig. 4
Fig. 4

Ordinary ray refractive index of crystal quartz. Dashed line, 1.5 K; solid line, 300 K.

Fig. 5
Fig. 5

Absorption coefficient of crystal quartz at 300 K (upper curve) and 1.5 K (lower curve).

Fig. 6
Fig. 6

Refractive indices of sapphire at 300 K and 1.5 K. The upper set is the extraordinary index. In each case the shorter curve is at 300 K, the longer one at 1.5 K.

Fig. 7
Fig. 7

Absorption coefficients of sapphire. ○ and X on the curves denote ordinary and extraordinary rays. The lower set corresponds to 1.5 K, the upper to 300 K.

Fig. 8
Fig. 8

Refractive index of germanium. Upper curve, 300 K; lower curve, 1.5 K.

Fig. 9
Fig. 9

Absorption coefficient of germanium. Upper curve, 300 K; lower curve, 1.5 K.

Fig. 10
Fig. 10

Optical constants of silicon. Upper and middle curves are the refractive index at 300 K and 1.5 K, respectively. Bottom curves are the absorption coefficient at these same temperatures, the lower one corresponding to 1.5 K.

Tables (8)

Tables Icon

Table I Thickness Change in Going from 300 K to 0 K

Tables Icon

Table II Optical Constants of Crystal Quartza

Tables Icon

Table III Zero Frequency Refractive Indices of Crystal Quartza

Tables Icon

Table IV Dispersion Parameters for Crystal Quartz Ordinary Ray

Tables Icon

Table V Optical Constants of Sapphirea

Tables Icon

Table VI Zero Frequency Refractive Indices of Sapphirea

Tables Icon

Table VII Optical Constants of Germaniuma

Tables Icon

Table VIII Optical Constants of Silicon

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = [ ( n - 1 ) 2 + k 2 ] / [ ( n + 1 ) 2 + k 2 ] ,
( ω ) = α [ ( 1 - ω p 2 ) / ω ( ω - i ν ) ] .
n 2 + k 2 = Re ( ) ,
2 n k = Im ( ) .

Metrics