Abstract

A new optical heterodyne scanning microscope is described in which both the illumination beam and reference beam scan the object in synchronization. Characteristics of the microscope are similar to those of the laser scanning microscope. The present system, however, has additional advantages in that the object illumination can be at least one order of magnitude less intense and that ambient light has no effect for images. Preliminary experimental results will be shown, including a two-dimensional cross-section pattern from a 3–D object, unfocused image rejection characteristics, and images of some biological samples.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Extensive bibliography will be found in O. E. DeLange, IEEE Spectrum77 (October1968).
    [CrossRef]
  2. Extensive bibliography will be found in R. K. Mueller, Proc. IEEE 59(9), 1319 (1971).
    [CrossRef]
  3. Extensive bibliography will be found in R. J. Collier et al., Optical Holography (Academic Press, New York, 1971).
  4. A. Korpel, R. L. Whitman, Appl. Opt. 8(8), 1577 (1969).
    [CrossRef] [PubMed]
  5. P. Davidovits, M. D. Egger, Appl. Opt. 10(7), 1615 (1971).
    [CrossRef] [PubMed]
  6. T. Yamamoto, Progress in OpticsE. Wolf, Ed. (North-Holland Publishing Co., New York, 1970), Vol. 8, p. 297.
    [CrossRef]
  7. L. J. Laub, J. Opt. Soc. Am. 62, 737A (1972).
  8. J. Lekavich, G. Hrbek, W. Watson, Proceedings of the Technical Program (Electro-Optical System Design Conference), New York, 22–24 September 1970.
  9. M. Petran et al., J. Opt. Soc. Am. 58, 661 (1968).
    [CrossRef]

1972 (1)

L. J. Laub, J. Opt. Soc. Am. 62, 737A (1972).

1971 (2)

Extensive bibliography will be found in R. K. Mueller, Proc. IEEE 59(9), 1319 (1971).
[CrossRef]

P. Davidovits, M. D. Egger, Appl. Opt. 10(7), 1615 (1971).
[CrossRef] [PubMed]

1969 (1)

1968 (2)

M. Petran et al., J. Opt. Soc. Am. 58, 661 (1968).
[CrossRef]

Extensive bibliography will be found in O. E. DeLange, IEEE Spectrum77 (October1968).
[CrossRef]

Collier, R. J.

Extensive bibliography will be found in R. J. Collier et al., Optical Holography (Academic Press, New York, 1971).

Davidovits, P.

DeLange, O. E.

Extensive bibliography will be found in O. E. DeLange, IEEE Spectrum77 (October1968).
[CrossRef]

Egger, M. D.

Hrbek, G.

J. Lekavich, G. Hrbek, W. Watson, Proceedings of the Technical Program (Electro-Optical System Design Conference), New York, 22–24 September 1970.

Korpel, A.

Laub, L. J.

L. J. Laub, J. Opt. Soc. Am. 62, 737A (1972).

Lekavich, J.

J. Lekavich, G. Hrbek, W. Watson, Proceedings of the Technical Program (Electro-Optical System Design Conference), New York, 22–24 September 1970.

Mueller, R. K.

Extensive bibliography will be found in R. K. Mueller, Proc. IEEE 59(9), 1319 (1971).
[CrossRef]

Petran, M.

Watson, W.

J. Lekavich, G. Hrbek, W. Watson, Proceedings of the Technical Program (Electro-Optical System Design Conference), New York, 22–24 September 1970.

Whitman, R. L.

Yamamoto, T.

T. Yamamoto, Progress in OpticsE. Wolf, Ed. (North-Holland Publishing Co., New York, 1970), Vol. 8, p. 297.
[CrossRef]

Appl. Opt. (2)

IEEE Spectrum (1)

Extensive bibliography will be found in O. E. DeLange, IEEE Spectrum77 (October1968).
[CrossRef]

J. Opt. Soc. Am. (2)

L. J. Laub, J. Opt. Soc. Am. 62, 737A (1972).

M. Petran et al., J. Opt. Soc. Am. 58, 661 (1968).
[CrossRef]

Proc. IEEE (1)

Extensive bibliography will be found in R. K. Mueller, Proc. IEEE 59(9), 1319 (1971).
[CrossRef]

Other (3)

Extensive bibliography will be found in R. J. Collier et al., Optical Holography (Academic Press, New York, 1971).

T. Yamamoto, Progress in OpticsE. Wolf, Ed. (North-Holland Publishing Co., New York, 1970), Vol. 8, p. 297.
[CrossRef]

J. Lekavich, G. Hrbek, W. Watson, Proceedings of the Technical Program (Electro-Optical System Design Conference), New York, 22–24 September 1970.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of optical heterodyne imaging system where microscope objectives (O1 and O2) and a cube beam splitter (B.S.) are used: A.D., acoustic beam deflector; MS, mechanical scanner; PM, photodetector; F, electronic filter; DIS, display device (CRT).

Fig. 2
Fig. 2

Experimental result; point-spread function of the system (Fig. 1).

Fig. 3
Fig. 3

Two-dimensional image of 50-pm-interval mesh pattern obtained by the system.

Fig. 4
Fig. 4

(a) Schematic of the cross section of object; (b) and (c) two-dimensional cross-section traces from the heterodyne system.

Fig. 5
Fig. 5

(a) Schematic of a cross section of object sample, (b) the image obtained with the heterodyne system, (c) image obtained by a conventional optical microscope.

Fig. 6
Fig. 6

Onion skin image; focused [(a) and (c)] and defocused [(b) and (d)] images obtained by the heterodyne system [(a) and (b)] and by a conventional optical microscope [(c) and (d)].

Fig. 7
Fig. 7

Images of semitransparent biological samples; top left and right: obtained by the heterodyne system; bottom left and right: obtained by a conventional optical microscope.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f ( x ¯ 0 - x ¯ ) r ( x ¯ ) ,
I 0 ( x ¯ 0 ; t ) = α ( f * R ) ( x ¯ 0 ) cos [ Δ ω t + Φ ( x ¯ 0 ) ] ,
Φ [ x ¯ 0 ( t ) ] = tan - 1 { [ I m ( f ) * R ] ( x ¯ 0 ) / [ Re ( f ) * R ] ( x ¯ 0 ) } .

Metrics