Abstract

In the summer of 1969, R. L. Gregory was working at Bell Labs, and suggested one might be able to increase the effective depth of field of a microscope if, instead of making the objective achromatic, one arranged that the different spectral colors come to foci at different distances from the lens. J. S. Courtney-Pratt suggested that one might then be able to view the image in 3-D by use of a simple binocular eyepiece modified to give a convergence of the images that varied with the spectral color. A 16-mm NA 0.4 objective has been made that gives a lateral resolution of 1 μ and a depth of field of 100 μ. 3-D displays present sharp images of objects with dark field illumination with depth magnification at any chosen value up to ± 10,000×.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Boutry, Brit. J. Sci. Instrum. 24, 287 (1947).
  2. CERCO, 10 Bd. de Verdun, 92 Courbevoie, France.
  3. G. A. Boutry, Instrumental Optics (Hilger & Watts, London, 1961).

1947 (1)

G. A. Boutry, Brit. J. Sci. Instrum. 24, 287 (1947).

Boutry, G. A.

G. A. Boutry, Brit. J. Sci. Instrum. 24, 287 (1947).

G. A. Boutry, Instrumental Optics (Hilger & Watts, London, 1961).

Brit. J. Sci. Instrum. (1)

G. A. Boutry, Brit. J. Sci. Instrum. 24, 287 (1947).

Other (2)

CERCO, 10 Bd. de Verdun, 92 Courbevoie, France.

G. A. Boutry, Instrumental Optics (Hilger & Watts, London, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Simplest stereoscopic microscope.

Fig. 2
Fig. 2

Common alternative form of stereoscopic microscope.

Fig. 3
Fig. 3

CERCO 16-mm NA 0.4 nonachromatic objective.

Fig. 4
Fig. 4

Mechanical construction of CERCO nonachromatic objective.

Fig. 5
Fig. 5

Aberrations of the CERCO objective.

Fig. 6
Fig. 6

Axial chromatism or variation of the focal plane with wavelength.

Fig. 7
Fig. 7

Simplest assembly of microscope to test its ability to scan in depth.

Fig. 8
Fig. 8

Assembly of microscope for 3-D viewing and/or for scanning in depth.

Fig. 9
Fig. 9

Arrangement for recording stereophotographs.

Fig. 10
Fig. 10

Stereo pair in black and white, photographed with the setup shown in Fig. 9. Lateral magnification is about 200×. Depth magnification is about 10 cm/100 μ, i.e., about 1000×.

Fig. 11
Fig. 11

The allowable displacement of the primary image d7 with accommodation of the secondary image from d5 to infinity is therefore: d 7 = F 2 - F 2 M 2 M 2 + 1 = F 2 M 2 + 1 = d 5 M 2 ( M 2 + 1 ) d 5 M 2 2 .

Fig. 12
Fig. 12

Simple image formation by objective. M = 100 , e 3 = 25 μ , M = 300 , e 3 = 3 μ , M = 800 , e 3 = 0.4 μ ,

Tables (2)

Tables Icon

Table I Deviation of Prisms P1 and P2 with Wavelengtha

Tables Icon

Table II Characteristics of the Multiple Passband Interference Filter

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

δ e = ( W λ / 1000 × 0.021 ) · 3 cm
d 7 = F 2 - F 2 M 2 M 2 + 1 = F 2 M 2 + 1 = d 5 M 2 ( M 2 + 1 ) d 5 M 2 2 .
M = 100 , e 3 = 25 μ , M = 300 , e 3 = 3 μ , M = 800 , e 3 = 0.4 μ ,
for red light , λ = 6500 Å , d Ray leigh = 1.0 μ for green light , λ = 5460 Å , d Ray leigh = 0.8 μ for blue light , λ = 4360 Å , d Ray leigh = 0.7 μ .
e 2 = ± [ n λ / 8 ( n sin u / 2 ) 2 ]
e 2 ± ( n λ ) / [ 2 ( n sin u ) 2 ]
e 2 = ± [ λ / 2 ( 0.4 ) 2 ] .... for λ = 0.65 μ , e 2 = ± 2 μ .... for λ = 0.55 μ , e 2 = ± 1.7 μ .... for λ = 0.4 μ , e 2 = ± 1.25 μ .
d 7 = F 2 / ( M 2 + 1 ) = 25 cm / [ M 2 ( M 2 + 1 ) ] 25 cm / M 2 2 .
1 F 1 = 1 v 1 + 1 u 1 ;             u 1 = F 1 v 1 v 1 - F 1 ;             d u 1 d v 1 = - F 1 2 ( v 1 - F 1 ) 2 .
( d u ) / ( d v ) = - 1 / m 1 2 = - 1 / ( M 1 - 1 ) 2
i . e . , ( d u ) / ( d v ) 1 / M 1 2 .
e 3 = d 7 / M 1 2 [ 25 / ( M 1 M 2 ) 2 ] cm = [ 25 / M 2 ] cm ,

Metrics