Abstract

The volume scattering function is calculated for particle suspensions consisting of two components systematically distributed in a manner consistent with Coulter Counter observations in the Sargasso Sea. The components are assigned refractive indices 1.01–0.01i and 1.15 to represent organic and inorganic particles, respectively. The only models found that reproduce observed scattering functions require a considerable fraction of the suspended particle volume to be organic in nature. This fraction, however, contributes less than 10% to the total scattering function. The model finally chosen indicates that the inorganic particles smaller than 2.5 μ do not occur in large enough concentrations to have a significant effect on the volume scattering function.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957). Strickly speaking, Mie theory applies only to scattering from spherical particles in a nonabsorbing medium. For an absorbing medium, the theory is still applicable if the variation in the field amplitude over distances of the order of the diameter of the particle is very small. In the present application, this variation is less than 1 part in 106 for the largest particle under consideration.
  2. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  3. A. Brunsting, P. F. Mullaney, Appl. Opt. 11, 675 (1972).
    [Crossref] [PubMed]
  4. A. C. Holland, G. Gagne, Appl. Opt. 9, 1113, (1970).
    [Crossref] [PubMed]
  5. G. N. Plass, G. W. Kattawar, Appl. Opt. 10, 1172 (1971).
    [Crossref]
  6. H. R. Gordon, O. B. Brown, Limn. Oceanogr. 17, 826 (1972).
    [Crossref]
  7. G. Kullenberg, Deep Sea Res. 15, 423 (1968).
  8. G. Kullenberg, Kobenhauns Univ. Inst. Fysisk Oceanogr., Report 13 (1970).
  9. M. B. Jacobs, M. Ewing, Science 163, 380 (1969).
    [Crossref] [PubMed]
  10. G. A. Riley, D. VanHemert, P. G. Wangersky, Limn. Oceanogr. 10, 354 (1965).
    [Crossref]
  11. H. R. Gordon, O. B. Brown, J. Opt. Soc. Am. 61, 1549 (1971).
  12. Bader, J. Geophys. Res. 75, 2837 (1970). This paper also contains references describing the Coulter Counter.
    [Crossref]
  13. T. N. Carlson, J. M. Prospero, J. Appl. Meteorol. 11, 283 (1972).
    [Crossref]
  14. J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
    [Crossref]
  15. C. Junge, R. Jaenicke, Aerosol Sci. 2, 304 (1971).
    [Crossref]

1972 (3)

A. Brunsting, P. F. Mullaney, Appl. Opt. 11, 675 (1972).
[Crossref] [PubMed]

H. R. Gordon, O. B. Brown, Limn. Oceanogr. 17, 826 (1972).
[Crossref]

T. N. Carlson, J. M. Prospero, J. Appl. Meteorol. 11, 283 (1972).
[Crossref]

1971 (3)

G. N. Plass, G. W. Kattawar, Appl. Opt. 10, 1172 (1971).
[Crossref]

C. Junge, R. Jaenicke, Aerosol Sci. 2, 304 (1971).
[Crossref]

H. R. Gordon, O. B. Brown, J. Opt. Soc. Am. 61, 1549 (1971).

1970 (3)

Bader, J. Geophys. Res. 75, 2837 (1970). This paper also contains references describing the Coulter Counter.
[Crossref]

A. C. Holland, G. Gagne, Appl. Opt. 9, 1113, (1970).
[Crossref] [PubMed]

J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
[Crossref]

1969 (1)

M. B. Jacobs, M. Ewing, Science 163, 380 (1969).
[Crossref] [PubMed]

1968 (1)

G. Kullenberg, Deep Sea Res. 15, 423 (1968).

1965 (1)

G. A. Riley, D. VanHemert, P. G. Wangersky, Limn. Oceanogr. 10, 354 (1965).
[Crossref]

Bader,

Bader, J. Geophys. Res. 75, 2837 (1970). This paper also contains references describing the Coulter Counter.
[Crossref]

Bonatti, E.

J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
[Crossref]

Brown, O. B.

H. R. Gordon, O. B. Brown, Limn. Oceanogr. 17, 826 (1972).
[Crossref]

H. R. Gordon, O. B. Brown, J. Opt. Soc. Am. 61, 1549 (1971).

Brunsting, A.

Carlson, T. N.

T. N. Carlson, J. M. Prospero, J. Appl. Meteorol. 11, 283 (1972).
[Crossref]

J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
[Crossref]

Ewing, M.

M. B. Jacobs, M. Ewing, Science 163, 380 (1969).
[Crossref] [PubMed]

Gagne, G.

Gordon, H. R.

H. R. Gordon, O. B. Brown, Limn. Oceanogr. 17, 826 (1972).
[Crossref]

H. R. Gordon, O. B. Brown, J. Opt. Soc. Am. 61, 1549 (1971).

Holland, A. C.

Jacobs, M. B.

M. B. Jacobs, M. Ewing, Science 163, 380 (1969).
[Crossref] [PubMed]

Jaenicke, R.

C. Junge, R. Jaenicke, Aerosol Sci. 2, 304 (1971).
[Crossref]

Junge, C.

C. Junge, R. Jaenicke, Aerosol Sci. 2, 304 (1971).
[Crossref]

Kattawar, G. W.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Kullenberg, G.

G. Kullenberg, Deep Sea Res. 15, 423 (1968).

G. Kullenberg, Kobenhauns Univ. Inst. Fysisk Oceanogr., Report 13 (1970).

Mullaney, P. F.

Plass, G. N.

Prospero, J. M.

T. N. Carlson, J. M. Prospero, J. Appl. Meteorol. 11, 283 (1972).
[Crossref]

J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
[Crossref]

Riley, G. A.

G. A. Riley, D. VanHemert, P. G. Wangersky, Limn. Oceanogr. 10, 354 (1965).
[Crossref]

Schubert, C.

J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
[Crossref]

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957). Strickly speaking, Mie theory applies only to scattering from spherical particles in a nonabsorbing medium. For an absorbing medium, the theory is still applicable if the variation in the field amplitude over distances of the order of the diameter of the particle is very small. In the present application, this variation is less than 1 part in 106 for the largest particle under consideration.

VanHemert, D.

G. A. Riley, D. VanHemert, P. G. Wangersky, Limn. Oceanogr. 10, 354 (1965).
[Crossref]

Wangersky, P. G.

G. A. Riley, D. VanHemert, P. G. Wangersky, Limn. Oceanogr. 10, 354 (1965).
[Crossref]

Aerosol Sci. (1)

C. Junge, R. Jaenicke, Aerosol Sci. 2, 304 (1971).
[Crossref]

Appl. Opt. (3)

Deep Sea Res. (1)

G. Kullenberg, Deep Sea Res. 15, 423 (1968).

Earth Planetary Sci. Lett. (1)

J. M. Prospero, E. Bonatti, C. Schubert, T. N. Carlson, Earth Planetary Sci. Lett. 9, 287 (1970).
[Crossref]

J. Appl. Meteorol. (1)

T. N. Carlson, J. M. Prospero, J. Appl. Meteorol. 11, 283 (1972).
[Crossref]

J. Geophys. Res. (1)

Bader, J. Geophys. Res. 75, 2837 (1970). This paper also contains references describing the Coulter Counter.
[Crossref]

J. Opt. Soc. Am. (1)

H. R. Gordon, O. B. Brown, J. Opt. Soc. Am. 61, 1549 (1971).

Limn. Oceanogr. (2)

G. A. Riley, D. VanHemert, P. G. Wangersky, Limn. Oceanogr. 10, 354 (1965).
[Crossref]

H. R. Gordon, O. B. Brown, Limn. Oceanogr. 17, 826 (1972).
[Crossref]

Science (1)

M. B. Jacobs, M. Ewing, Science 163, 380 (1969).
[Crossref] [PubMed]

Other (3)

G. Kullenberg, Kobenhauns Univ. Inst. Fysisk Oceanogr., Report 13 (1970).

H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957). Strickly speaking, Mie theory applies only to scattering from spherical particles in a nonabsorbing medium. For an absorbing medium, the theory is still applicable if the variation in the field amplitude over distances of the order of the diameter of the particle is very small. In the present application, this variation is less than 1 part in 106 for the largest particle under consideration.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

β(θ)/β(1°) for case (1). The volume concentration of the small fraction (m = 1.01–0.0li) increases from 0.1 in the top curve to 0.9 in the bottom curve in steps of 0.1.

Fig. 2
Fig. 2

β(θ)/β(1°) for case (2). The volume concentration of the small fraction (m = 1.15) is written to the right of the corresponding curve. The left scale is for the top four curves and right scale for the bottom five curves.

Fig. 3
Fig. 3

β(θ)/β(1°)for case (3). The volume concentration of the m = 1.01–0.0li fraction (here small means this index) is from the top to the bottom curve 0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.

Fig. 4
Fig. 4

The comparison of the normalized β(θ) with Kullenberg’s data for the cases that provide the most reasonable fits.

Tables (2)

Tables Icon

Table I Variation of β(1°) × 104/K with v/V for the Three Cases

Tables Icon

Table II Comparison Between Observed and Calculated Scattering Functionsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d N / d D = 33 , 000 / D 4             0.08 < D < 10.0 μ ,
d N / d D = 3 K / D 4             0.1 D 10.0 μ ,
d N i / d D = 3 K i / D 4             0.1 < D < 10.0 μ ,
v s / V = 0.217 ln ( 10 D ) ,
v L / V = K L / ( K L + K H ) ,
| d N d D | = 48.3 × 10 3 D 4 , 0.1 D 10.0 μ .
d N / d D ~ D - a , 0.1 < D < 2.5 μ

Metrics