Abstract

The ON-OFF ratio, insertion loss, and switching speed of polycrystalline ferroelectric ceramic PLZT electrooptic shutters fabricated with a zirconium to titanium ratio of 65 to 35 and a lanthanum concentration of ≈8% were investigated as functions of voltage amplitude and duration. Larger ON-OFF ratios (33 dB for dc mode) were observed for the chemically prepared material than for the mixed oxide material (18 dB). Similar results were observed in the pulsed mode. The relatively low insertion losses (4.5 dB) and fast half-wave retardation switching (≈1 μsec) are acceptable for many shutter applications. Observed variations of these characteristics with number of switching cycles are undesirable.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Thacher, C. E. Land, IEEE Trans. Electron. Devices ED-16, 515 (1969).
    [CrossRef]
  2. J. R. Maldonado, A. H. Meitzler, IEEE Trans. Electron. Devices ED-17, 148 (1970).
    [CrossRef]
  3. G. H. Haertling, C. E. Land, Am. Ceramic Soc. 54, 1 (1971).
    [CrossRef]
  4. C. E. Land, P. D. Thacher, Physics of Opto-Electric Material, W. A. Albers, Ed. (Plenum, New York, 1971), pp. 169–196.
    [CrossRef]
  5. C. E. Land, P. D. Thacher, Proc. IEEE 57, 751 (1969).
    [CrossRef]
  6. G. E. Haertling, C. E. Land, Ferroelectric 3, 269 (1972); IEEE Trans. Sonics Ultrason. SU-19, 269 (1972).
    [CrossRef]
  7. G. E. Haerting, Sandia Laboratories; private communication, 1972.
  8. M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SC-RR-72-0384 (June1972).
  9. F. J. McClung, R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
    [CrossRef]
  10. T. M. Christmas, C. G. Weldey, Electron. Lett. 6, 694 (1970).
    [CrossRef]
  11. M. Michon et al., Rev. Sci. Instrum. 40, 263 (1969).
    [CrossRef]
  12. J. R. Bettis, A. H. Guenther, IEEE J. Quantum Electron. QE-6, 483 (1970).
    [CrossRef]
  13. A. H. Guenther, J. R. Bettis, Proc. IEEE 59, 689 (1971).
    [CrossRef]
  14. Since the PLZT shutters are operated in the transverse mode the value of VDC(λ/2) depends on the electrode spacing. The EDC(λ/2) is the proper parameter to be considered for the PLZT shutters described here.
  15. A cycle consists of the application of a pulse electric field after the material was poled to PR, applying a negative dc electric field equal to the coercive field (Ec), removing it, applying a positive dc electric field equal Ec and removing it. This corresponds to a complete cycle around the P vs E hysteresis loop starting at PR.
  16. R. H. Plumlee, Sandia Laboratories Report SC-RR-67-730 (Oct.1967).
  17. G. W. Taylor, J. Appl. Phys. 38, 4697 (1967).
    [CrossRef]
  18. W. P. Mason, Molecular Science and Molecular Engineering, A. Von Hippel, Ed. (Wiley, New York, 1959), pp. 292–308.
  19. C. E. Land, Sandia Laboratories; private communication, 1973.
  20. M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SLA 73-0709 (Sept.1973).
  21. M. J. Landry, Appl. Phys. Lett. 18, 494 (1971); M. J. Landry, IEEE J. Quantum Electron. QE-9, 604 (1973).
    [CrossRef]
  22. P. D. Thacher, Ferroelectric 3, 147 (1972).
    [CrossRef]
  23. J. T. Cutchen, J. O. Harris, Digest of Technical Papers for Society of Information Display International Symposium, June 6–8, 1971, San Francisco, California.
  24. G. R. Laguna, Sandia Laboratories; private communication, 1973.

1972 (2)

G. E. Haertling, C. E. Land, Ferroelectric 3, 269 (1972); IEEE Trans. Sonics Ultrason. SU-19, 269 (1972).
[CrossRef]

P. D. Thacher, Ferroelectric 3, 147 (1972).
[CrossRef]

1971 (3)

A. H. Guenther, J. R. Bettis, Proc. IEEE 59, 689 (1971).
[CrossRef]

M. J. Landry, Appl. Phys. Lett. 18, 494 (1971); M. J. Landry, IEEE J. Quantum Electron. QE-9, 604 (1973).
[CrossRef]

G. H. Haertling, C. E. Land, Am. Ceramic Soc. 54, 1 (1971).
[CrossRef]

1970 (3)

J. R. Maldonado, A. H. Meitzler, IEEE Trans. Electron. Devices ED-17, 148 (1970).
[CrossRef]

T. M. Christmas, C. G. Weldey, Electron. Lett. 6, 694 (1970).
[CrossRef]

J. R. Bettis, A. H. Guenther, IEEE J. Quantum Electron. QE-6, 483 (1970).
[CrossRef]

1969 (3)

M. Michon et al., Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

P. D. Thacher, C. E. Land, IEEE Trans. Electron. Devices ED-16, 515 (1969).
[CrossRef]

C. E. Land, P. D. Thacher, Proc. IEEE 57, 751 (1969).
[CrossRef]

1967 (1)

G. W. Taylor, J. Appl. Phys. 38, 4697 (1967).
[CrossRef]

1963 (1)

F. J. McClung, R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[CrossRef]

Bettis, J. R.

A. H. Guenther, J. R. Bettis, Proc. IEEE 59, 689 (1971).
[CrossRef]

J. R. Bettis, A. H. Guenther, IEEE J. Quantum Electron. QE-6, 483 (1970).
[CrossRef]

Christmas, T. M.

T. M. Christmas, C. G. Weldey, Electron. Lett. 6, 694 (1970).
[CrossRef]

Cutchen, J. T.

J. T. Cutchen, J. O. Harris, Digest of Technical Papers for Society of Information Display International Symposium, June 6–8, 1971, San Francisco, California.

Guenther, A. H.

A. H. Guenther, J. R. Bettis, Proc. IEEE 59, 689 (1971).
[CrossRef]

J. R. Bettis, A. H. Guenther, IEEE J. Quantum Electron. QE-6, 483 (1970).
[CrossRef]

Haerting, G. E.

G. E. Haerting, Sandia Laboratories; private communication, 1972.

Haertling, G. E.

G. E. Haertling, C. E. Land, Ferroelectric 3, 269 (1972); IEEE Trans. Sonics Ultrason. SU-19, 269 (1972).
[CrossRef]

Haertling, G. H.

G. H. Haertling, C. E. Land, Am. Ceramic Soc. 54, 1 (1971).
[CrossRef]

Harris, J. O.

J. T. Cutchen, J. O. Harris, Digest of Technical Papers for Society of Information Display International Symposium, June 6–8, 1971, San Francisco, California.

Hellwarth, R. W.

F. J. McClung, R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[CrossRef]

Laguna, G. R.

G. R. Laguna, Sandia Laboratories; private communication, 1973.

Land, C. E.

G. E. Haertling, C. E. Land, Ferroelectric 3, 269 (1972); IEEE Trans. Sonics Ultrason. SU-19, 269 (1972).
[CrossRef]

G. H. Haertling, C. E. Land, Am. Ceramic Soc. 54, 1 (1971).
[CrossRef]

P. D. Thacher, C. E. Land, IEEE Trans. Electron. Devices ED-16, 515 (1969).
[CrossRef]

C. E. Land, P. D. Thacher, Proc. IEEE 57, 751 (1969).
[CrossRef]

C. E. Land, P. D. Thacher, Physics of Opto-Electric Material, W. A. Albers, Ed. (Plenum, New York, 1971), pp. 169–196.
[CrossRef]

C. E. Land, Sandia Laboratories; private communication, 1973.

Landry, M. J.

M. J. Landry, Appl. Phys. Lett. 18, 494 (1971); M. J. Landry, IEEE J. Quantum Electron. QE-9, 604 (1973).
[CrossRef]

M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SLA 73-0709 (Sept.1973).

M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SC-RR-72-0384 (June1972).

Maldonado, J. R.

J. R. Maldonado, A. H. Meitzler, IEEE Trans. Electron. Devices ED-17, 148 (1970).
[CrossRef]

Mason, W. P.

W. P. Mason, Molecular Science and Molecular Engineering, A. Von Hippel, Ed. (Wiley, New York, 1959), pp. 292–308.

McCarthy, A. E.

M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SLA 73-0709 (Sept.1973).

M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SC-RR-72-0384 (June1972).

McClung, F. J.

F. J. McClung, R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[CrossRef]

Meitzler, A. H.

J. R. Maldonado, A. H. Meitzler, IEEE Trans. Electron. Devices ED-17, 148 (1970).
[CrossRef]

Michon, M.

M. Michon et al., Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Plumlee, R. H.

R. H. Plumlee, Sandia Laboratories Report SC-RR-67-730 (Oct.1967).

Taylor, G. W.

G. W. Taylor, J. Appl. Phys. 38, 4697 (1967).
[CrossRef]

Thacher, P. D.

P. D. Thacher, Ferroelectric 3, 147 (1972).
[CrossRef]

C. E. Land, P. D. Thacher, Proc. IEEE 57, 751 (1969).
[CrossRef]

P. D. Thacher, C. E. Land, IEEE Trans. Electron. Devices ED-16, 515 (1969).
[CrossRef]

C. E. Land, P. D. Thacher, Physics of Opto-Electric Material, W. A. Albers, Ed. (Plenum, New York, 1971), pp. 169–196.
[CrossRef]

Weldey, C. G.

T. M. Christmas, C. G. Weldey, Electron. Lett. 6, 694 (1970).
[CrossRef]

Am. Ceramic Soc. (1)

G. H. Haertling, C. E. Land, Am. Ceramic Soc. 54, 1 (1971).
[CrossRef]

Appl. Phys. Lett. (1)

M. J. Landry, Appl. Phys. Lett. 18, 494 (1971); M. J. Landry, IEEE J. Quantum Electron. QE-9, 604 (1973).
[CrossRef]

Electron. Lett. (1)

T. M. Christmas, C. G. Weldey, Electron. Lett. 6, 694 (1970).
[CrossRef]

Ferroelectric (2)

P. D. Thacher, Ferroelectric 3, 147 (1972).
[CrossRef]

G. E. Haertling, C. E. Land, Ferroelectric 3, 269 (1972); IEEE Trans. Sonics Ultrason. SU-19, 269 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. R. Bettis, A. H. Guenther, IEEE J. Quantum Electron. QE-6, 483 (1970).
[CrossRef]

IEEE Trans. Electron. Devices (2)

P. D. Thacher, C. E. Land, IEEE Trans. Electron. Devices ED-16, 515 (1969).
[CrossRef]

J. R. Maldonado, A. H. Meitzler, IEEE Trans. Electron. Devices ED-17, 148 (1970).
[CrossRef]

J. Appl. Phys. (1)

G. W. Taylor, J. Appl. Phys. 38, 4697 (1967).
[CrossRef]

Proc. IEEE (3)

A. H. Guenther, J. R. Bettis, Proc. IEEE 59, 689 (1971).
[CrossRef]

C. E. Land, P. D. Thacher, Proc. IEEE 57, 751 (1969).
[CrossRef]

F. J. McClung, R. W. Hellwarth, Proc. IEEE 51, 46 (1963).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Michon et al., Rev. Sci. Instrum. 40, 263 (1969).
[CrossRef]

Other (11)

J. T. Cutchen, J. O. Harris, Digest of Technical Papers for Society of Information Display International Symposium, June 6–8, 1971, San Francisco, California.

G. R. Laguna, Sandia Laboratories; private communication, 1973.

G. E. Haerting, Sandia Laboratories; private communication, 1972.

M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SC-RR-72-0384 (June1972).

C. E. Land, P. D. Thacher, Physics of Opto-Electric Material, W. A. Albers, Ed. (Plenum, New York, 1971), pp. 169–196.
[CrossRef]

Since the PLZT shutters are operated in the transverse mode the value of VDC(λ/2) depends on the electrode spacing. The EDC(λ/2) is the proper parameter to be considered for the PLZT shutters described here.

A cycle consists of the application of a pulse electric field after the material was poled to PR, applying a negative dc electric field equal to the coercive field (Ec), removing it, applying a positive dc electric field equal Ec and removing it. This corresponds to a complete cycle around the P vs E hysteresis loop starting at PR.

R. H. Plumlee, Sandia Laboratories Report SC-RR-67-730 (Oct.1967).

W. P. Mason, Molecular Science and Molecular Engineering, A. Von Hippel, Ed. (Wiley, New York, 1959), pp. 292–308.

C. E. Land, Sandia Laboratories; private communication, 1973.

M. J. Landry, A. E. McCarthy, Sandia Laboratories Report SLA 73-0709 (Sept.1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The components of a PLZT shutter and test configuration are illustrated. The polarizers P1 and P2 are crossed and aligned with their (E) axis at 45° to the polar (P) axis of the PLZT material (FC). The optical axis (OA) of the compensator (C) is aligned at 90° to the polar axis of the cell. The aperture (A) is used to define the area of the cell interacting with the He–Ne laser beam.

Fig. 2
Fig. 2

The different modes of operation (M-E, S-E, and Q-E) are illustrated along with the irreversible polarization swtiched when a 22.0-kV/cm pulsed electric field was applied to a piece of (7/65/35) PLZT material operating in the M-E mode.

Fig. 3
Fig. 3

The (8/65/35) PLZT shutter opening time (τ) compared to the electric field pulsed (Ep) for constant voltage pulse width (Δτ).

Fig. 4
Fig. 4

The (8/65/35) PLZT shutter opening time (τ) compared to the voltage pulse width (Δτ) for constant pulsed electric field (Ep).

Fig. 5
Fig. 5

The (8/65/35) PZT shutter ON-OFF ratio (Rp) compared to the voltage pulse width (Δτ) for a constant pulsed electric field (Ep).

Fig. 6
Fig. 6

The (8/65/35) PLZT shutter ON-OFF ratio (Rp) compared to the pulsed electric field (Ep) for a constant voltage pulse width (Δτ).

Fig. 7
Fig. 7

A comparison is made of the ON-OFF ratio (Rp) to the pulsed electric field (Ep) for a (7+/65/35), (8+/65/35), and (8/65/35) piece of PLZT material in the shutter for different voltage pulse widths (Δτ).

Tables (2)

Tables Icon

Table I Specifics of PLZT Shutter Switching when Activated with Direct Current Voltage and 70-nsec Duration Voltage Pulses

Tables Icon

Table II Transmission and Insertion Losses for PC and PLZT Shutters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T ( E D C ) = T 0 + [ T M ( E D C ) - T 0 ] sin 2 [ Δ Γ ( E D C ) π / λ ] ,
[ T M ( E D C ) - T 0 ] sin 2 [ Δ Γ ( E D C ) π / λ ]
T ( E p , t ) = T 0 + γ 1 ( E p ) t exp [ - ( t / t s ) ] ,
T ( E p , t ) = T 0 + [ T M ( E p ) - T 0 ] ( t / t s ) exp [ 1 - ( t / t s ) ] .
R D C = [ T ( E D C ) ] / T 0 = 1 + ( { [ T M ( E D C ) ] / T 0 } - 1 ) sin 2 [ Δ Γ ( E D C ) π / λ ] ,
R p ( E p , t ) = [ T ( E p , t ) ] / T 0 = 1 + ( { [ T M ( E p ) ] / T 0 } - 1 ) ( t / t s ) exp [ 1 - ( t / t s ) ] .
α i p ( dB ) = 10 log { I IN / [ I ON ( P ) ] } ,
α i p ( dB ) = 10 log [ T 0 + γ 1 ( E p ) t s exp ( - 1 ) ] - 1

Metrics