Abstract

The use of single-particle light-scattering measurements to determine the origin of atmospheric hazes has been explored by measurement of laboratory aerosols, field samples, and computer analysis of the light-scattering data. The refractive index of measured spherical particles 800 nm to 1000 nm in diameter was determined within 2%. For particles of diameter less than 500 nm the measurement of absolute scattering intensity is required for complete analysis. Distinctive nonspherical and absorbing particles were observed both in automotive exhaust and atmospheric samples. Electrostatic suspension of atmospheric particulates is demonstrated to provide a practical approach to optical measurement of single particles. The technique may be used to calibrate optical particle counters or identify particles with unique shape or refractive index.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. McCrone, R. G. Draftz, J. G. Delly, The Particle Atlas (Ann Arbor Science Publishers, Ann Arbor, Michigan, 1967).
  2. D. T. Phillips, P. J. Wyatt, R. M. Berkman, J. Colloid Int. Sci. 34, 159 (1970).
    [CrossRef]
  3. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).
  4. A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
    [CrossRef]
  5. A. Güttler, Ann. Phys. 11 (6), 65 (1952).
    [CrossRef]
  6. W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
    [CrossRef]
  7. P. J. Wyatt, Ed., Atlas of Light Scattering Curves (Science Spectrum, Santa Barbara, 1971).
  8. D. T. Phillips, P. J. Wyatt, Optical Studies of Automotive and Natural Hazes: Scattering from Single Particles, Final Report for APCO Contract CPA-70-171, CRC-APRAC No. CAPA 6-68, Feb. (1971). Available from the Federal Information Clearing House.
  9. T. P. Wallace, J. P. Kratohvil, J. Polym. Sci., Pt. C, No. 25, pp. 89–98 (1968).
  10. W. A. Farone, M. Kerker, J. Opt. Soc. Am. 56, 476 (1966).
    [CrossRef]
  11. D. Cooke, M. Kerker, J. Opt. Soc. Am. 59, 43 (1969).
    [CrossRef]
  12. R. Mireles, J. Math. Phys. 45, 127 (1966).

1970

D. T. Phillips, P. J. Wyatt, R. M. Berkman, J. Colloid Int. Sci. 34, 159 (1970).
[CrossRef]

1969

1968

T. P. Wallace, J. P. Kratohvil, J. Polym. Sci., Pt. C, No. 25, pp. 89–98 (1968).

1966

1965

W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
[CrossRef]

1952

A. Güttler, Ann. Phys. 11 (6), 65 (1952).
[CrossRef]

1951

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Aden, A. L.

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

Berkman, R. M.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, J. Colloid Int. Sci. 34, 159 (1970).
[CrossRef]

Cooke, D.

Delly, J. G.

W. C. McCrone, R. G. Draftz, J. G. Delly, The Particle Atlas (Ann Arbor Science Publishers, Ann Arbor, Michigan, 1967).

Draftz, R. G.

W. C. McCrone, R. G. Draftz, J. G. Delly, The Particle Atlas (Ann Arbor Science Publishers, Ann Arbor, Michigan, 1967).

Espenscheid, W. F.

W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
[CrossRef]

Farone, W. A.

Güttler, A.

A. Güttler, Ann. Phys. 11 (6), 65 (1952).
[CrossRef]

Kerker, M.

D. Cooke, M. Kerker, J. Opt. Soc. Am. 59, 43 (1969).
[CrossRef]

W. A. Farone, M. Kerker, J. Opt. Soc. Am. 56, 476 (1966).
[CrossRef]

W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
[CrossRef]

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

Kratohvil, J. P.

T. P. Wallace, J. P. Kratohvil, J. Polym. Sci., Pt. C, No. 25, pp. 89–98 (1968).

Matijevic, E.

W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
[CrossRef]

McCrone, W. C.

W. C. McCrone, R. G. Draftz, J. G. Delly, The Particle Atlas (Ann Arbor Science Publishers, Ann Arbor, Michigan, 1967).

Mireles, R.

R. Mireles, J. Math. Phys. 45, 127 (1966).

Phillips, D. T.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, J. Colloid Int. Sci. 34, 159 (1970).
[CrossRef]

D. T. Phillips, P. J. Wyatt, Optical Studies of Automotive and Natural Hazes: Scattering from Single Particles, Final Report for APCO Contract CPA-70-171, CRC-APRAC No. CAPA 6-68, Feb. (1971). Available from the Federal Information Clearing House.

Wallace, T. P.

T. P. Wallace, J. P. Kratohvil, J. Polym. Sci., Pt. C, No. 25, pp. 89–98 (1968).

Willis, E.

W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
[CrossRef]

Wyatt, P. J.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, J. Colloid Int. Sci. 34, 159 (1970).
[CrossRef]

D. T. Phillips, P. J. Wyatt, Optical Studies of Automotive and Natural Hazes: Scattering from Single Particles, Final Report for APCO Contract CPA-70-171, CRC-APRAC No. CAPA 6-68, Feb. (1971). Available from the Federal Information Clearing House.

Ann. Phys.

A. Güttler, Ann. Phys. 11 (6), 65 (1952).
[CrossRef]

J. Appl. Phys.

A. L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951).
[CrossRef]

J. Colloid Int. Sci.

D. T. Phillips, P. J. Wyatt, R. M. Berkman, J. Colloid Int. Sci. 34, 159 (1970).
[CrossRef]

W. F. Espenscheid, E. Willis, E. Matijevic, M. Kerker, J. Colloid Int. Sci. 20, 501 (1965).
[CrossRef]

J. Math. Phys.

R. Mireles, J. Math. Phys. 45, 127 (1966).

J. Opt. Soc. Am.

J. Polym. Sci.

T. P. Wallace, J. P. Kratohvil, J. Polym. Sci., Pt. C, No. 25, pp. 89–98 (1968).

Other

P. J. Wyatt, Ed., Atlas of Light Scattering Curves (Science Spectrum, Santa Barbara, 1971).

D. T. Phillips, P. J. Wyatt, Optical Studies of Automotive and Natural Hazes: Scattering from Single Particles, Final Report for APCO Contract CPA-70-171, CRC-APRAC No. CAPA 6-68, Feb. (1971). Available from the Federal Information Clearing House.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).

W. C. McCrone, R. G. Draftz, J. G. Delly, The Particle Atlas (Ann Arbor Science Publishers, Ann Arbor, Michigan, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the light-scattering measurement. Scattered light intensity is recorded as a function of scattering angle by the Differential II single-particle photometer as the particle is held electrostatically suspended.

Fig. 2
Fig. 2

Initial pine + uv particle differential scattering intensity. Vertical and horizontal polarization, incident wavelength 514.5 nm.

Fig. 3
Fig. 3

Differential scattered intensity of a gasoline + NOz + uv particle. Vertical and horizontal polarization, 514.5-nm wavelength. (Two traces.)

Fig. 4
Fig. 4

Automobile exhaust particle differential scattered intensity, vertical polarization, 514.5-nm wavelength. Note the signal variation caused by rotation of this nonspherical particle.

Fig. 5
Fig. 5

Haze particle differential scattered intensity. Goleta (Santa Barbara County). Vertical polarization, 514.5-nm incident wavelength. (Two traces.)

Fig. 6
Fig. 6

Nonspherical irregular atmospheric particle differential scattered intensity (Santa Barbara). Vertical polarization, 514.5-nm incident wavelength. Note the similarity to the automobile exhaust particle shown in Fig. 4. (Two traces.)

Fig. 7
Fig. 7

Theoretical differential scattered intensity for the initial pine aerosol particle (Fig. 2), 514.5-nm incident wavelength, vertical polarization. r = 550 nm; n = 1.48, 1.49, 1.50. Crosses show experimental data.

Fig. 8
Fig. 8

Theoretical differential scattered intensity for the gasoline + NOx aerosol particle (Fig. 3), 514.5-nm incident wavelength, vertical polarization. r = 410 nm; n = 1.52, 1.54, 156. Crosses show experimental data.

Metrics