Abstract

The use of single-particle light-scattering measurements to determine the origin of atmospheric hazes has been explored by measurement of laboratory aerosols, field samples, and computer analysis of the light-scattering data. The refractive index of measured spherical particles 800 nm to 1000 nm in diameter was determined within 2%. For particles of diameter less than 500 nm the measurement of absolute scattering intensity is required for complete analysis. Distinctive nonspherical and absorbing particles were observed both in automotive exhaust and atmospheric samples. Electrostatic suspension of atmospheric particulates is demonstrated to provide a practical approach to optical measurement of single particles. The technique may be used to calibrate optical particle counters or identify particles with unique shape or refractive index.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription