Abstract

Two methods for holographic cinematography are described and analyzed: the scatter-plate and the lens methods. The advantages, capabilities, and limitations of each are given.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Haines, D. B. Brumm, Proc. IEEE 55, 1512 (1967).
    [CrossRef]
  2. W. E. Kock, Proc. IEEE 55, 1103 (1967).
    [CrossRef]
  3. K. A. Haines, D. B. Brumm, Appl. Opt. 7, 1185 (1968).
    [CrossRef] [PubMed]
  4. V. S. Srinivasan, Appl. Opt. 9, 2187 (1970).
    [CrossRef] [PubMed]
  5. M. E. Cox, R. G. Buckles, D. Whitlow, Appl. Opt. 10, 128 (1971).
    [CrossRef] [PubMed]
  6. D. A. Ansley, Appl. Opt. 9, 815 (1970).
    [CrossRef] [PubMed]
  7. E. N. Leith, J. Upatnieks, SPIE Journal 4, 3 (1965).
  8. H. Kogelnik, Bell Syst. Tech. J. 44, 56 (1965).
  9. D. Brumm, Ph.D. Dissertation, U. of Mich. (1970).

1971

1970

1968

1967

K. A. Haines, D. B. Brumm, Proc. IEEE 55, 1512 (1967).
[CrossRef]

W. E. Kock, Proc. IEEE 55, 1103 (1967).
[CrossRef]

1965

E. N. Leith, J. Upatnieks, SPIE Journal 4, 3 (1965).

H. Kogelnik, Bell Syst. Tech. J. 44, 56 (1965).

Ansley, D. A.

Brumm, D.

D. Brumm, Ph.D. Dissertation, U. of Mich. (1970).

Brumm, D. B.

K. A. Haines, D. B. Brumm, Appl. Opt. 7, 1185 (1968).
[CrossRef] [PubMed]

K. A. Haines, D. B. Brumm, Proc. IEEE 55, 1512 (1967).
[CrossRef]

Buckles, R. G.

Cox, M. E.

Haines, K. A.

K. A. Haines, D. B. Brumm, Appl. Opt. 7, 1185 (1968).
[CrossRef] [PubMed]

K. A. Haines, D. B. Brumm, Proc. IEEE 55, 1512 (1967).
[CrossRef]

Kock, W. E.

W. E. Kock, Proc. IEEE 55, 1103 (1967).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 44, 56 (1965).

Leith, E. N.

E. N. Leith, J. Upatnieks, SPIE Journal 4, 3 (1965).

Srinivasan, V. S.

Upatnieks, J.

E. N. Leith, J. Upatnieks, SPIE Journal 4, 3 (1965).

Whitlow, D.

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 44, 56 (1965).

Proc. IEEE

K. A. Haines, D. B. Brumm, Proc. IEEE 55, 1512 (1967).
[CrossRef]

W. E. Kock, Proc. IEEE 55, 1103 (1967).
[CrossRef]

SPIE Journal

E. N. Leith, J. Upatnieks, SPIE Journal 4, 3 (1965).

Other

D. Brumm, Ph.D. Dissertation, U. of Mich. (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scatter-plate holography. O, object; SP, scatter plate; H, hologram; r, reference beam.

Fig. 2
Fig. 2

System model using fly’s-eye array. E, aperture of eye; O, object plane; SP, scatter plate; H, plane of hologram; a, aperture used for recording hologram.

Fig. 3
Fig. 3

System model for obtaining an image resolution limit. I, image; SP, scatter plate.

Fig. 4
Fig. 4

Relation among system parameters, as determined by Eq. (9), with λ = 550 mm. Any point above a given σ-line satisfies Eq. (9) for that value of σ.

Fig. 5
Fig. 5

The large lens technique. The observer, Obs, is in plane P1; the hologram H is made at P3.

Fig. 6
Fig. 6

Diagram for calculating the SW product.

Fig. 8
Fig. 8

Diagram for describing the pseudoscopic inversion process.

Fig. 9
Fig. 9

The vv arrangement.

Fig. 10
Fig. 10

The ww case.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

r 1 = λ D 2 / a ,
r 2 = λ D 2 D 1 / a d = λ D 1 / σ x 0 ,
a / D 2 = σ x 0 / d ,
D 4 = D 1 E / σ x 0 ,
D 4 = D 1 D 2 E / d a .
r 3 = D 3 x 0 / ( D 1 + D 3 ) .
x 0 3600 λ D 1 / σ D 3 ,
x 0 ( D 1 + D 3 ) / 3600 ,
D 3 1 2 ( { [ 4 ( 3600 ) 2 λ D 1 / σ ] + D 1 2 } 1 2 - D 1 ) .
D 3 = λ D 1 2 / ( σ x 0 2 - λ D 1 ) .
ρ = λ D 1 / x 0 ,
λ D 1 / σ x 0 D 3 1 / 3600
x 0 3600 λ D 1 / σ D 3 .
x 0 ( D 1 + D 3 ) / 3600.
S h W h = S 0 W 0 .
= sin θ / λ ,
W T = ( 2 / λ ) sin 1 2 θ T ,
W T sec 1 2 θ T = W O sec 1 2 θ O + W P sec 1 2 θ P ,
( 1 / d 1 ) + ( 1 / d 2 ) = 1 / f ,
S h = d 0 ( d 2 / d 1 ) ,
S h = d 0 f / d 1 [ 1 - ( f / d 1 ) ] d 0 f / d 1 ,
W h = ( 2 / λ ) sin 1 2 θ h = d p / λ ¯ [ d 2 2 + ( d p / 2 ) 2 ] 1 2 ,
W h = d p / λ f { [ d 1 / ( d 1 - f ) ] 2 + ( d p / 2 f ) 2 } 1 2
= d p / ( λ f ) .
S h W h = d p d 0 / λ d 1 [ 1 - ( f / d 1 ) ] { [ d 1 / ( d 1 - f ) ] 2 + ( d p / 2 f ) 2 } 1 2 d p d 0 / λ d 1 .
d p 2 f ,
W h = ( 2 / λ ) [ 1 - 2 ( k f / d p ) 2 ] ,
γ = ( S W h f / S W h r ) / ( S W m f / S W m r ) .
γ = S W h f / S W h r .
( S W ) h f = S h W f = d p d 0 / λ d 1 ,
S W h r = angle subtended by scene at the eye visual acuity of the eye = ( d p / d 1 ) / ( λ / d e ) = d p d e / d 1 λ ,
γ = d 0 / d e .

Metrics