Abstract

A photoelectrochemical process has been developed that is capable of producing surface relief holograms on semiconductor crystals. The exposure characteristics of this recording process have been measured, and an analysis of their effect on the reconstructed image is presented. The photoanodic engraving (PAE) process applied to silicon wafers has produced holographic storage densities exceeding 105 bits/cm2 for data mask type objects. These surface relief holograms have an archival permanence unequaled by any other holographic recording medium. Replication of the surface relief holograms on clear vinyl plastic has been achieved with storage densities of approximately 5 × 103 bits/cm2.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
    [CrossRef]
  2. L. H. Lin, Proc. IEEE 57, 252 (1969).
    [CrossRef]
  3. J. J. Amodei, D. R. Bosomworth, Appl. Opt. 8, 2473 (1969).
    [CrossRef] [PubMed]
  4. R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
    [CrossRef]
  5. T. A. Shankoff, Appl. Opt. 7, 2101 (1968).
    [CrossRef] [PubMed]
  6. D. R. Bosomworth, H. J. Gerritsen, Appl. Opt. 7, 95 (1968).
    [CrossRef] [PubMed]
  7. A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).
  8. P. F. Schmidt, J. Oroshnik, C. C. Hardman, Solid State Electron. 7, 631 (1964).
    [CrossRef]
  9. R. D. Wales, J. Electrochem. Soc. 116, 483 (1969).
    [CrossRef]
  10. W. H. Brattain, C. G. B. Garrett, Bull Syst. Tech. J. 34, 129 (1955).
  11. P. F. Schmidt, W. Michel, J. Electrochem. Soc. 104, 230 (1957).
    [CrossRef]
  12. D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).
    [CrossRef]
  13. H. Gerischer, J. Electrochem. Soc. 113, 1174 (1966).
    [CrossRef]
  14. R. Meek, J. Electrochem. Soc. 118, 437 (1971).
    [CrossRef]
  15. A. L. Dalisa, W. K. Zwicker, D. J. DeBitetto, P. Harnack, Appl. Phys. 17, 208 (1970).
  16. J. A. Ratcliffe, Rep. Prog. Phys. 19, 188 (1957).
    [CrossRef]
  17. A. Kozma, Appl. Opt. 6, 855 (1967).
  18. A. Kozma, G. W. Jull, K. O. Hill, Appl. Opt. 9, 721 (1970).
    [CrossRef] [PubMed]
  19. C. B. Burckhardt, Appl. Opt. 9, 695 (1970).
    [CrossRef] [PubMed]
  20. R. Bartolini, W. Hannan, D. Karlsons, M. Lurie, Appl. Opt. 9, 2283 (1970).
    [CrossRef] [PubMed]
  21. J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
    [CrossRef] [PubMed]
  22. H. Dammann, J. Opt. Soc. Am. 60, 1635 (1970).
    [CrossRef]
  23. D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1969).
  24. D. Falconer, Photogr. Sci. Eng. 10, 133 (1966).

1971 (1)

R. Meek, J. Electrochem. Soc. 118, 437 (1971).
[CrossRef]

1970 (5)

1969 (6)

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1969).

J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
[CrossRef] [PubMed]

L. H. Lin, Proc. IEEE 57, 252 (1969).
[CrossRef]

J. J. Amodei, D. R. Bosomworth, Appl. Opt. 8, 2473 (1969).
[CrossRef] [PubMed]

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[CrossRef]

R. D. Wales, J. Electrochem. Soc. 116, 483 (1969).
[CrossRef]

1968 (3)

1967 (1)

A. Kozma, Appl. Opt. 6, 855 (1967).

1966 (2)

H. Gerischer, J. Electrochem. Soc. 113, 1174 (1966).
[CrossRef]

D. Falconer, Photogr. Sci. Eng. 10, 133 (1966).

1964 (1)

P. F. Schmidt, J. Oroshnik, C. C. Hardman, Solid State Electron. 7, 631 (1964).
[CrossRef]

1958 (1)

D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).
[CrossRef]

1957 (2)

P. F. Schmidt, W. Michel, J. Electrochem. Soc. 104, 230 (1957).
[CrossRef]

J. A. Ratcliffe, Rep. Prog. Phys. 19, 188 (1957).
[CrossRef]

1956 (1)

A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).

1955 (1)

W. H. Brattain, C. G. B. Garrett, Bull Syst. Tech. J. 34, 129 (1955).

Amodei, J. J.

Bartolini, R.

Bosomworth, D. R.

Brattain, W. H.

W. H. Brattain, C. G. B. Garrett, Bull Syst. Tech. J. 34, 129 (1955).

Burckhardt, C. B.

Chen, F. S.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Dalisa, A. L.

A. L. Dalisa, W. K. Zwicker, D. J. DeBitetto, P. Harnack, Appl. Phys. 17, 208 (1970).

Dammann, H.

DeBitetto, D. J.

A. L. Dalisa, W. K. Zwicker, D. J. DeBitetto, P. Harnack, Appl. Phys. 17, 208 (1970).

Falconer, D.

D. Falconer, Photogr. Sci. Eng. 10, 133 (1966).

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Gabor, D.

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1969).

Garrett, C. G. B.

W. H. Brattain, C. G. B. Garrett, Bull Syst. Tech. J. 34, 129 (1955).

Gerischer, H.

H. Gerischer, J. Electrochem. Soc. 113, 1174 (1966).
[CrossRef]

Gerritsen, H. J.

Hannan, W.

Hardman, C. C.

P. F. Schmidt, J. Oroshnik, C. C. Hardman, Solid State Electron. 7, 631 (1964).
[CrossRef]

Harnack, P.

A. L. Dalisa, W. K. Zwicker, D. J. DeBitetto, P. Harnack, Appl. Phys. 17, 208 (1970).

Hill, K. O.

Jull, G. W.

Karlsons, D.

Kozma, A.

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Lin, L. H.

L. H. Lin, Proc. IEEE 57, 252 (1969).
[CrossRef]

Lurie, M.

Meek, R.

R. Meek, J. Electrochem. Soc. 118, 437 (1971).
[CrossRef]

Meier, R. W.

Mezrich, R. S.

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[CrossRef]

Michel, W.

P. F. Schmidt, W. Michel, J. Electrochem. Soc. 104, 230 (1957).
[CrossRef]

Oroshnik, J.

P. F. Schmidt, J. Oroshnik, C. C. Hardman, Solid State Electron. 7, 631 (1964).
[CrossRef]

Ratcliffe, J. A.

J. A. Ratcliffe, Rep. Prog. Phys. 19, 188 (1957).
[CrossRef]

Schmidt, P. F.

P. F. Schmidt, J. Oroshnik, C. C. Hardman, Solid State Electron. 7, 631 (1964).
[CrossRef]

P. F. Schmidt, W. Michel, J. Electrochem. Soc. 104, 230 (1957).
[CrossRef]

Shankoff, T. A.

Turner, D. R.

D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).
[CrossRef]

Uhlir, A.

A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).

Urbach, J. C.

Wales, R. D.

R. D. Wales, J. Electrochem. Soc. 116, 483 (1969).
[CrossRef]

Zwicker, W. K.

A. L. Dalisa, W. K. Zwicker, D. J. DeBitetto, P. Harnack, Appl. Phys. 17, 208 (1970).

Appl. Opt. (8)

Appl. Phys. (1)

A. L. Dalisa, W. K. Zwicker, D. J. DeBitetto, P. Harnack, Appl. Phys. 17, 208 (1970).

Appl. Phys. Lett. (2)

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[CrossRef]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Bell Syst. Tech. J. (1)

A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).

Bull Syst. Tech. J. (1)

W. H. Brattain, C. G. B. Garrett, Bull Syst. Tech. J. 34, 129 (1955).

J. Electrochem. Soc. (5)

P. F. Schmidt, W. Michel, J. Electrochem. Soc. 104, 230 (1957).
[CrossRef]

D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).
[CrossRef]

H. Gerischer, J. Electrochem. Soc. 113, 1174 (1966).
[CrossRef]

R. Meek, J. Electrochem. Soc. 118, 437 (1971).
[CrossRef]

R. D. Wales, J. Electrochem. Soc. 116, 483 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Photogr. Sci. Eng. (1)

D. Falconer, Photogr. Sci. Eng. 10, 133 (1966).

Proc. IEEE (1)

L. H. Lin, Proc. IEEE 57, 252 (1969).
[CrossRef]

Proc. Roy. Soc. (London) (1)

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1969).

Rep. Prog. Phys. (1)

J. A. Ratcliffe, Rep. Prog. Phys. 19, 188 (1957).
[CrossRef]

Solid State Electron. (1)

P. F. Schmidt, J. Oroshnik, C. C. Hardman, Solid State Electron. 7, 631 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of experimental cell.

Fig. 2
Fig. 2

Engraving depth vs exposure time for incident intensities of 0.25 mW, 1 mW, 2 mW, 6 mW, and 12 mW/cm2.

Fig. 3
Fig. 3

Engraving depth vs incident intensity with exposure time constant and equal to 120 sec.

Fig. 4
Fig. 4

Comparison of the intensities in the diffraction orders of a holographic grating and the predicted Bessel function response of a sinusoidal phase grating with phase modulation equal to 5 rads.

Fig. 5
Fig. 5

Reciprocity test for PAE process.

Fig. 6
Fig. 6

Cross section of a sinusoidal grating in the silicon surface as well as the similarly modulated anodic film.

Fig. 7
Fig. 7

Comparison of MTF for the PAE process on silicon vs that of Kodak 649F photographic plates.

Fig. 8
Fig. 8

Experimental configuration for recording Foturier transform holograms by the PAE process.

Fig. 9
Fig. 9

Reconstructed image of a periodic array type object. No tendency toward filling in the six intentionally missing dots is observed.

Fig. 10
Fig. 10

Portion of a reconstructed image from a PAE hologram of a microfiche page. Storage density approximately 13 pages/cm2.

Fig. 11
Fig. 11

Magnified portion of a real image from a PAE hologram on silicon (a) compared to that from a replica hologram pressed into vinyl plastic (b).

Fig. 12
Fig. 12

Ratio of total noise to that due to the intrinsic nonlinearity alone vs incident intensity (exposure time of 30 see).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 = k 2 J 1 2 ( φ ) ,
R = k exp ( i φ ) .
φ ( x , y ) = [ a I 2 ( x , y ) + b I ( x , y ) ] ,
I ( x , y ) = o 2 + r 2 + o r * + o * r ,
R = k [ 1 + i φ + ( i φ ) 2 2 + ( i φ ) 3 3 ! + . ] .
R = k { ( i b ) + 2 K [ i a - b 2 ] - 2 a b [ 3 K 2 + 3 o 2 r 2 ] - a 2 [ 4 K 3 + 12 K o 2 r 2 ] } o r * ,
I ( primary ) = k 2 { [ b + 4 a o 2 i ] - [ 4 b 2 o 2 + 30 a b o 4 + 56 a 2 o 6 ] } o r 2 ,
I ( primary ) = k 2 [ b 2 + 16 b 4 o 4 ] ,
N ( Total ) / N ( Intrinsic ) = ( 7.8 I 4 + 9.5 I 3 + 6.6 I 2 + 1.4 ) / 1.3 I .

Metrics