Abstract

Any motion of the scene during the exposure of a hologram results in a spatial modulation of the recorded fringe contrast. On reconstruction, this produces a spatial amplitude modulation of the reconstructed wavefront, which results in blurring of the image not unlike that of a conventional photograph. The concept of motion holography has been aptly described theoretically by D. B. Neumann. This paper presents and discusses the experimental investigation of a new holographic technique that allows resolution of front surface detail for scene velocities on the order of 9 × 105 cm/sec.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Kurtz, H. Y. Loh, Appl Opt. 9, 7 (1970).
    [CrossRef]
  2. D. B. Neumann, J. Opt. Soc. Am. 58, 447 (1968).
    [CrossRef]
  3. D. B. Neumann, “The Effect of Scene Motion of Holography” (Ohio State University, Ph.D. Dissertation, 1967).
  4. R. L. Kurtz, “A Holographic System That Records Front-Surface Detail of a Scene Moving at High Velocity” (Virginia Polytechnic Institute and State University, Ph.D. Dissertation, 1971).
  5. P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

1971 (1)

P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

1970 (1)

R. L. Kurtz, H. Y. Loh, Appl Opt. 9, 7 (1970).
[CrossRef]

1968 (1)

Fagot, H.

P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

Kurtz, R. L.

R. L. Kurtz, H. Y. Loh, Appl Opt. 9, 7 (1970).
[CrossRef]

R. L. Kurtz, “A Holographic System That Records Front-Surface Detail of a Scene Moving at High Velocity” (Virginia Polytechnic Institute and State University, Ph.D. Dissertation, 1971).

Loh, H. Y.

R. L. Kurtz, H. Y. Loh, Appl Opt. 9, 7 (1970).
[CrossRef]

Neumann, D. B.

D. B. Neumann, J. Opt. Soc. Am. 58, 447 (1968).
[CrossRef]

D. B. Neumann, “The Effect of Scene Motion of Holography” (Ohio State University, Ph.D. Dissertation, 1967).

Schwab, J.

P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

Smigielski, P.

P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

Stimpfling, A.

P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

Appl Opt. (1)

R. L. Kurtz, H. Y. Loh, Appl Opt. 9, 7 (1970).
[CrossRef]

J. Opt. Soc. Am. (1)

Nouv. Rev. Opt. Appl. 2 (1)

P. Smigielski, H. Fagot, A. Stimpfling, J. Schwab, Nouv. Rev. Opt. Appl. 2, No. 4 (1971).

Other (2)

D. B. Neumann, “The Effect of Scene Motion of Holography” (Ohio State University, Ph.D. Dissertation, 1967).

R. L. Kurtz, “A Holographic System That Records Front-Surface Detail of a Scene Moving at High Velocity” (Virginia Polytechnic Institute and State University, Ph.D. Dissertation, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometrical relation between Δx and ΔL.

Fig. 2
Fig. 2

General configuration.

Fig. 3
Fig. 3

Target disks.

Fig. 4
Fig. 4

Schematic of scattered radiation.

Fig. 5
Fig. 5

Edge washout.

Fig. 6
Fig. 6

Results of system 1.

Fig. 7
Fig. 7

Results of system 2.

Fig. 8
Fig. 8

Results of systems 3 and 4.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ x = ( Δ L / 2 ) 1 2 ( a / 2 3 / b ) ,
Δ x = v τ ,
f 1 P f 2 = L + Δ L .
2 a = L ,
Δ L = 2 Δ a ,
Δ x = v τ
25.4 cm a 53.3 cm
15 cm d 50 cm .
Δ x = ( Δ L / 2 ) 1 2 ( a 1 2 / cos θ ) ,
Δ x = v τ = 255 μ .
Δ x = 715 μ
a = 50.81 cm ,             b = 41 cm , d = 30 cm ,             θ = 36 deg , F = 8.81 ,
v = 175 m / sec .
Δ x = 4.4 μ .
v = 1.75 cm / sec
Δ x = 4.4 μ .
Δ x = 2250 μ = v τ ,
v = 90 × 10 5 cm / sec .

Metrics