Abstract

An extremely stable Michelson interferometer with an optical path difference up to several thousand meters has been developed for the precise investigation of the frequency behavior of lasers. The theoretical value for the spectral resolution is of the order of 1012. The spectral resolution of a real system is determined by external disturbances and was measured to be close to 1011. The capability and the characteristics of the system are discussed.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, B. Daino, K. R. Manes, IEEE J. Quantum Electron. 3, 180 (1967).
    [CrossRef]
  2. D. R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3, 523 (1964).
    [CrossRef]
  3. D. R. Herriott, H. J. Schulte, Appl. Opt. 4, 883 (1965).
    [CrossRef]
  4. F. T. Arecchi, A. Sona, Nuovo Cimento 32, 1117 (1964).
    [CrossRef]
  5. R. B. Herrick, J. R. Meyer-Arendt, Appl. Opt. 5, 981 (1966).
    [CrossRef] [PubMed]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).
  7. H. Gerhardt, H. Welling, A. Güttner, Z. Phys. 253, 113 (1972).
    [CrossRef]
  8. R. Arrathoon, A. E. Siegman, Appl. Phys. Lett. 13, 197 (1968).
    [CrossRef]
  9. H. Gerhardt, V. Bödecker, H. Welling, Z. Angew. Phys. 31, 11 (1971).

1972 (1)

H. Gerhardt, H. Welling, A. Güttner, Z. Phys. 253, 113 (1972).
[CrossRef]

1971 (1)

H. Gerhardt, V. Bödecker, H. Welling, Z. Angew. Phys. 31, 11 (1971).

1968 (1)

R. Arrathoon, A. E. Siegman, Appl. Phys. Lett. 13, 197 (1968).
[CrossRef]

1967 (1)

A. E. Siegman, B. Daino, K. R. Manes, IEEE J. Quantum Electron. 3, 180 (1967).
[CrossRef]

1966 (1)

1965 (1)

1964 (2)

Arecchi, F. T.

F. T. Arecchi, A. Sona, Nuovo Cimento 32, 1117 (1964).
[CrossRef]

Arrathoon, R.

R. Arrathoon, A. E. Siegman, Appl. Phys. Lett. 13, 197 (1968).
[CrossRef]

Bödecker, V.

H. Gerhardt, V. Bödecker, H. Welling, Z. Angew. Phys. 31, 11 (1971).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).

Daino, B.

A. E. Siegman, B. Daino, K. R. Manes, IEEE J. Quantum Electron. 3, 180 (1967).
[CrossRef]

Gerhardt, H.

H. Gerhardt, H. Welling, A. Güttner, Z. Phys. 253, 113 (1972).
[CrossRef]

H. Gerhardt, V. Bödecker, H. Welling, Z. Angew. Phys. 31, 11 (1971).

Güttner, A.

H. Gerhardt, H. Welling, A. Güttner, Z. Phys. 253, 113 (1972).
[CrossRef]

Herrick, R. B.

Herriott, D. R.

Kogelnik, H.

Kompfner, R.

Manes, K. R.

A. E. Siegman, B. Daino, K. R. Manes, IEEE J. Quantum Electron. 3, 180 (1967).
[CrossRef]

Meyer-Arendt, J. R.

Schulte, H. J.

Siegman, A. E.

R. Arrathoon, A. E. Siegman, Appl. Phys. Lett. 13, 197 (1968).
[CrossRef]

A. E. Siegman, B. Daino, K. R. Manes, IEEE J. Quantum Electron. 3, 180 (1967).
[CrossRef]

Sona, A.

F. T. Arecchi, A. Sona, Nuovo Cimento 32, 1117 (1964).
[CrossRef]

Welling, H.

H. Gerhardt, H. Welling, A. Güttner, Z. Phys. 253, 113 (1972).
[CrossRef]

H. Gerhardt, V. Bödecker, H. Welling, Z. Angew. Phys. 31, 11 (1971).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. Arrathoon, A. E. Siegman, Appl. Phys. Lett. 13, 197 (1968).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman, B. Daino, K. R. Manes, IEEE J. Quantum Electron. 3, 180 (1967).
[CrossRef]

Nuovo Cimento (1)

F. T. Arecchi, A. Sona, Nuovo Cimento 32, 1117 (1964).
[CrossRef]

Z. Angew. Phys. (1)

H. Gerhardt, V. Bödecker, H. Welling, Z. Angew. Phys. 31, 11 (1971).

Z. Phys. (1)

H. Gerhardt, H. Welling, A. Güttner, Z. Phys. 253, 113 (1972).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Michelson interferometer with an optical delay line. The signal I(t) at the output of the detector is plotted for a linear frequency shift of the laser.

Fig. 2
Fig. 2

Light paths in the optical delay line of the Michelson interferometer.

Fig. 3
Fig. 3

Experimental setup of the double Michelson interferometer for the measurement of the laser and the system parameters.

Fig. 4
Fig. 4

Power spectral density of optical path fluctuations for delay line I. Power spectral density is plotted in units of frequency where it is considered that a change of optical path δsD corresponds to a frequency deviation δν.

Fig. 5
Fig. 5

The discrete modulation spectrum of the optical path fluctuations for delay line I. The modulation amplitude is plotted in units of frequency (see Fig. 4).

Fig. 6
Fig. 6

A plot of the pulse rate for the averaged and chopped signal I(t) as a function of pulse height for the exact determination of the visibility.

Fig. 7
Fig. 7

Visibility curve of a free-running, single-mode He–Ne laser for large optical path differences. The Gaussian line shape corresponds to a line width of 9 · 104 Hz.

Tables (2)

Tables Icon

Table I Standard Frequency Deviations and Line Widths of Delay Lines and Lasera

Tables Icon

Table II Calculated Standard Frequency Deviations for Delay Line I

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ I ( t ) = K · ν ( t ) · τ ,
ν 0 / δ ν = 2 π · α · s D / λ · S / N ,
ν 0 / σ ν s = s D / σ D ,
( σ ν M ) 2 = ( σ ν ) 2 + ( σ ν s ) 2 .
( σ ν s ) 2 = 0 G ν ( f ) d f + 1 2 · i ( ν ^ i ) 2 .
V = ( I max - I min ) / ( I max + I min ) ,

Metrics