Abstract

Spectral emission polarization of quartz and calcite polished plates for observation angles of 20° and 70° is calculated by the substitution of complex index of refraction values for each mineral into Fresnel’s equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width (Δλ ≈ 1.5 μm) spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band (Δλ ≈ 6 μm) for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Holl, J. Opt. Soc. Am. 57, 683 (1967).
    [CrossRef]
  2. W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
    [CrossRef]
  3. K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
    [CrossRef]

1970 (1)

K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
[CrossRef]

1967 (1)

1961 (1)

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Hellwege, K. H.

K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
[CrossRef]

Holl, H. B.

Kleinman, D. A.

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Lesch, W.

K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
[CrossRef]

Plihal, M.

K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
[CrossRef]

Schaack, G.

K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

W. G. Spitzer, D. A. Kleinman, Phys. Rev. 121, 1324 (1961).
[CrossRef]

Z. Phys. (1)

K. H. Hellwege, W. Lesch, M. Plihal, G. Schaack, Z. Phys. 232, 61(1970).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Quartz complex index of refraction (ordinary index, n + ik).

Fig. 2
Fig. 2

Quartz complex index of refraction (extraordinary index, n + ik).

Fig. 3
Fig. 3

Calcite complex index of refraction (ordinary index, n + ik).

Fig. 4
Fig. 4

Calcite complex index of refraction (extraordinary index, n + ik).

Fig. 5
Fig. 5

Spectral emissivity and emission polarization of polished quartz (ordinary ray).

Fig. 6
Fig. 6

Spectral emissivity and emission polarization of polished calcite (ordinary ray).

Fig. 7
Fig. 7

Spectral emissivity and emission polarization of polished calcite (extraordinary ray).

Tables (2)

Tables Icon

Table I Oscillator Parameters for Calcite in the Frequency Region 600–2000 cm−1

Tables Icon

Table II Emission Polarization Field Measurements, 5 August 1970, Clear Sky Conditions, Willow Run Airport, Michigan

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P E = ( E - E ) / ( E + E ) .
E = 1 - R ,
E = 1 - R .
R = [ ( a - cos θ e ) 2 + b 2 ] / [ ( a + cos θ e ) 2 + b 2 ] ,
R = { [ ( a - cos θ e ) 2 + b 2 ] / [ ( a + cos θ e ) 2 + b 2 ] } × { [ ( a - sin θ e tan θ e ) 2 + b 2 ] / [ ( a + sin θ e tan θ e ) 2 + b 2 ] } ,
a 2 = 1 2 { n 2 - k 2 - sin 2 θ e + [ 4 n 2 k 2 + ( n 2 - k 2 - sin 2 θ e ) 2 ] 1 2 }
b 2 = 1 2 { - n 2 + k 2 + sin 2 θ e + [ 4 n 2 k 2 + ( n 2 - k 2 - sin 2 θ e ) 2 ] 1 2 } .
2 n k = j 4 π p j ν j 2 [ γ j ν j ν ( ν j 2 - ν 2 ) 2 + γ j 2 ν j 2 ν 2 ] ,
n 2 - k 2 = + j 4 π p j ν j 2 [ ν j 2 - ν 2 ( ν j 2 - ν 2 ) 2 + γ j 2 ν j 2 ν 2 ] ,
R ( ν ) = { [ n ( ν ) - 1 ] 2 + k 2 ( ν ) } / { [ n ( ν ) + 1 ] 2 + k 2 ( ν ) } .

Metrics