Abstract

New experimental and analytical techniques are used to derive information on the electronic band structure of SiP2, a semimetal having a pyrite structure. The ir reflectivity can be described by a two-carrier model having effective charge density to mass ratios of 0.152 and 0.0273 with relaxation times of 1.07 and 0.66 × 10−14 sec, respectively. This model yields a dc conductivity of 1.07 × 106 mho/m in agreement with measured values. Interband transitions at 1.97 eV, 2.69 eV, 3.45 eV, 3.95 eV, and 4.42 eV were defined from structure in the imaginary part of the dielectric constant and from piezoreflectance data.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 105.
  2. S. M. Marcus, P. C. Donohue, Phys. Rev. 183, 668 (1969).
    [CrossRef]
  3. P. C. Donohue, W. J. Siemons, J. L. Gillson, J. Phys. Chem. Solids 29, 807 (1968).
    [CrossRef]
  4. H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 98.
  5. G. F. Bassani, in The Optical Properties of Solids, J. Tauc, Ed. (Academic, New York, 1966), p. 33.
  6. M. Cardona, in Modulation Spectroscopy, F. Seitz, D. Turn-bull, H. Ehrenreich, Eds. (Academic, New York, 1969), p. 89.
  7. The microspecular reflectance attachments are available as model 126 from Barnes Engineering, Stamford, Conn., for the Perkin-Elmer 221; as Special Product 50-502-000 from Cary Instruments, Monrovia, Calif.
  8. Aluminum mirrors were fabricated by Denton Vacuum, Inc., Cherry Hill, N.J.
  9. J. Strong, Procedures in Experimental Physics (Prentice Hall, New York, 1938).
  10. B. H. Billings, J. Opt. Soc. Am. 41, 966 (1951). The calcite plates fabricated for use as depolarizers are available from Karl Lambrecht Corp., Chicago, Ill.
    [CrossRef]
  11. F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
    [CrossRef]
  12. The adhesive bonding sample and ceramic transducer is Torr Seal available from Varian, Vacuum Division.
  13. W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
    [CrossRef]
  14. S. Roberts, Phys. Rev. 114, 104 (1959).
    [CrossRef]
  15. N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York, 1958), p. 111.
  16. J. P. Chandler, “Stepit—Minimum of a Function of Several (N) Variables,” Program 66, Quantum Chemistry Program Exchange, Indiana University.
  17. J. L. Gillson, of this Laboratory, private communication.
  18. A. H. Wilson, The Theory of Metals (Cambridge U. P., London, 1958), p. 213.
  19. P. E. Bierstedt, of this Laboratory, private communication of unpublished results.
  20. Derivation in Appendix done by J. D. Bierlein of this laboratory.
  21. W. A. Shurcliff, Polarized Light, Production and Use (Harvard, U. P., Cambridge, 1966).

1969

S. M. Marcus, P. C. Donohue, Phys. Rev. 183, 668 (1969).
[CrossRef]

1968

P. C. Donohue, W. J. Siemons, J. L. Gillson, J. Phys. Chem. Solids 29, 807 (1968).
[CrossRef]

1965

W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
[CrossRef]

1963

F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
[CrossRef]

1959

S. Roberts, Phys. Rev. 114, 104 (1959).
[CrossRef]

1951

Bassani, G. F.

G. F. Bassani, in The Optical Properties of Solids, J. Tauc, Ed. (Academic, New York, 1966), p. 33.

Bierstedt, P. E.

P. E. Bierstedt, of this Laboratory, private communication of unpublished results.

Billings, B. H.

Cardona, M.

M. Cardona, in Modulation Spectroscopy, F. Seitz, D. Turn-bull, H. Ehrenreich, Eds. (Academic, New York, 1969), p. 89.

Chandler, J. P.

J. P. Chandler, “Stepit—Minimum of a Function of Several (N) Variables,” Program 66, Quantum Chemistry Program Exchange, Indiana University.

Donohue, P. C.

S. M. Marcus, P. C. Donohue, Phys. Rev. 183, 668 (1969).
[CrossRef]

P. C. Donohue, W. J. Siemons, J. L. Gillson, J. Phys. Chem. Solids 29, 807 (1968).
[CrossRef]

Ehrenreich, H.

H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 98.

H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 105.

Engeler, W. E.

W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
[CrossRef]

Fritzsche, H.

W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
[CrossRef]

Garfinkel, M.

W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
[CrossRef]

Gillson, J. L.

P. C. Donohue, W. J. Siemons, J. L. Gillson, J. Phys. Chem. Solids 29, 807 (1968).
[CrossRef]

J. L. Gillson, of this Laboratory, private communication.

Jones, H.

N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York, 1958), p. 111.

Marcus, S. M.

S. M. Marcus, P. C. Donohue, Phys. Rev. 183, 668 (1969).
[CrossRef]

McCackin, F. L.

F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
[CrossRef]

Mott, N. F.

N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York, 1958), p. 111.

Passaglia, E.

F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
[CrossRef]

Philipp, H. R.

H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 98.

H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 105.

Roberts, S.

S. Roberts, Phys. Rev. 114, 104 (1959).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light, Production and Use (Harvard, U. P., Cambridge, 1966).

Siemons, W. J.

P. C. Donohue, W. J. Siemons, J. L. Gillson, J. Phys. Chem. Solids 29, 807 (1968).
[CrossRef]

Steinberg, H. L.

F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
[CrossRef]

Stromberg, R. R.

F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
[CrossRef]

Strong, J.

J. Strong, Procedures in Experimental Physics (Prentice Hall, New York, 1938).

Tiemann, J. J.

W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
[CrossRef]

Wilson, A. H.

A. H. Wilson, The Theory of Metals (Cambridge U. P., London, 1958), p. 213.

J. Opt. Soc. Am.

J. Phys. Chem. Solids

P. C. Donohue, W. J. Siemons, J. L. Gillson, J. Phys. Chem. Solids 29, 807 (1968).
[CrossRef]

J. Res. Nat. Bur. Stand. (U.S.)

F. L. McCackin, E. Passaglia, R. R. Stromberg, H. L. Steinberg, J. Res. Nat. Bur. Stand. (U.S.) 67A, 363 (1963).
[CrossRef]

Phys. Rev.

S. M. Marcus, P. C. Donohue, Phys. Rev. 183, 668 (1969).
[CrossRef]

S. Roberts, Phys. Rev. 114, 104 (1959).
[CrossRef]

Phys. Rev. Lett.

W. E. Engeler, H. Fritzsche, M. Garfinkel, J. J. Tiemann, Phys. Rev. Lett. 14, 1069 (1965).
[CrossRef]

Other

N. F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York, 1958), p. 111.

J. P. Chandler, “Stepit—Minimum of a Function of Several (N) Variables,” Program 66, Quantum Chemistry Program Exchange, Indiana University.

J. L. Gillson, of this Laboratory, private communication.

A. H. Wilson, The Theory of Metals (Cambridge U. P., London, 1958), p. 213.

P. E. Bierstedt, of this Laboratory, private communication of unpublished results.

Derivation in Appendix done by J. D. Bierlein of this laboratory.

W. A. Shurcliff, Polarized Light, Production and Use (Harvard, U. P., Cambridge, 1966).

H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 105.

The adhesive bonding sample and ceramic transducer is Torr Seal available from Varian, Vacuum Division.

H. R. Philipp, H. Ehrenreich, in Semiconductors and Semi-metals, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1967), Vol. 3, p. 98.

G. F. Bassani, in The Optical Properties of Solids, J. Tauc, Ed. (Academic, New York, 1966), p. 33.

M. Cardona, in Modulation Spectroscopy, F. Seitz, D. Turn-bull, H. Ehrenreich, Eds. (Academic, New York, 1969), p. 89.

The microspecular reflectance attachments are available as model 126 from Barnes Engineering, Stamford, Conn., for the Perkin-Elmer 221; as Special Product 50-502-000 from Cary Instruments, Monrovia, Calif.

Aluminum mirrors were fabricated by Denton Vacuum, Inc., Cherry Hill, N.J.

J. Strong, Procedures in Experimental Physics (Prentice Hall, New York, 1938).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy dependence of the specular reflectance of SiP2. ×-values calculated from ellipsometrically derived optical constants.

Fig. 2
Fig. 2

Schematic drawing of the ellipsometer used to measure optical constants of 1-mm2 surfaces. The double-rail optical bench supporting the photodetector, analyzer, and compensators is mounted on the rotatable arm of an x-ray diffractometer stage.

Fig. 3
Fig. 3

Energy dependence of the phase shift (ϕK) for SiP2 calcaulated from Eq. (9) without the high energy correction. The discrete points (×) are values of ϕ measured ellipsometrically. Values for Δϕ(ϕKϕ) are indicated with Δ’s. The energy dependence of Δϕ is described by the linear dashed curve indicated.

Fig. 4
Fig. 4

Energy dependence of the piezoreflectance of SiP2. The energies corresponding to structure in 2 are indicated with vertical bars.

Fig. 5
Fig. 5

Energy dependence of the real (1) and imaginary (2) parts of the dielectric constant for SiP2.

Tables (1)

Tables Icon

Table I Free Carrier Parameters for SiP2 Derived from Infrared Data

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

r = ( N - 1 ) / ( N + 1 ) = R exp ( i ϕ ) ,
ϕ ( E 0 ) = 1 2 π 0 d ln R ( E ) d E ln | E + E 0 E - E 0 | d E ,
k = 2 R sin ϕ / Q ,
n = ( 1 - R ) / Q ,
Q = 1 + R - 2 R cos ϕ , 1 = n 2 - k 2 = Re ( ) ,
2 = 2 n k = Im ( ) .
r p / r s ρ = tan θ A exp ( i ϕ ) ,
N = n 1 tan θ i { 1 - [ 4 ρ sin 2 θ i / ( ρ + 1 ) 2 ] } 1 2 ,
ϕ K ( E 0 ) = 1 2 π E L E U d log [ R ( E ) ] d E log | E + E 0 E - E 0 | d E
= 1 + m K 0 m λ 2 λ 2 - λ 2 b m + 1 δ m λ b m λ - λ 2 2 π c 0 j σ j λ f j - i λ ,
σ j = ( τ j e 2 / m e V ) ( n * / m * ) j ,
x 2 = p ( R c p - R m p ) 2 / E p 2 + q ( ϕ c q - ϕ n q ) 2 E q 2
R H = ( σ 1 2 R 1 + σ 2 2 R 2 ) / ( σ 1 + σ 2 ) 2 ,
A ( θ A ) = [ C A 2 C A S A C A S A S A 2 ] ,
C ( δ ) = [ exp ( i δ / 2 ) 0 0 exp ( - i δ / 2 ) ] .
R = [ r p exp ( i ϕ p ) 0 0 r s exp ( i ϕ s ) ] ,
I 0 = [ p i C i s i S i ]
I = [ A ] [ C ] [ R ] [ I 0 ] [ p s ] .
I = p 2 + s 2 = r p 2 C A 2 C 1 2 P 2 2 + r s 2 S A 2 S 1 2 S i 2 + 2 r s r p C A S A C 1 S 1 p i s i cos ( Δ + δ ) ,
C 1 2 = 1 2 [ 1 + cos ( 2 ω t ) ] , S 1 2 = 1 2 [ 1 - cos ( 2 ω t ) ] , S 1 C 1 = 1 2 sin 2 ω t .
I = I 0 + I ( 2 ω ) .
I 0 = 1 2 r p 2 C A 2 p i 2 + 1 2 r s 2 S A 2 s i 2 ,
I ( 2 ω ) = 1 2 cos ( 2 ω t ) ( r p 2 C A 2 p i 2 - r s 2 S A 2 s i 2 ) + sin 2 ω t × r s r p C A S A p i s i cos ( Δ + δ ) .
r p / r s = ( s i / p / ) tan ϕ A , and Δ + δ = ± ( π / 2 ) .

Metrics