Abstract

A discussion of the application of Raman scattering to solid state problems is followed by a description of the experimental technique. A recent experiment is described in which the thickness of the domain wall in the strongly coupled ferroelectric–ferroelastic material gadolinium molybdate is found to be within the limits 0.8–3 μ. The Raman scattering from part of the wall volume is characteristic of the high temperature paraelectric phase.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Raman, Indian J. Phys. 2, 387 (1928).
  2. A comprehensive collection of recent work is published in Light Scattering Spectra of Solids, Proceedings of the International Conference on Light Scattering, New York, G. B. Wright, Ed. (Springer Verlag, New York, 1968).
  3. P. A. Fleury, S. P. S. Porto, J. Appl. Phys. 39, 1035 (1968); S. R. Chinn et al., Phys. Rev. B3, 1709 (1971); P. A. Fleury, H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970).
    [CrossRef]
  4. C. Kittel, Solid State Commun. 10, 119 (1972).
    [CrossRef]
  5. H. J. Borchardt, P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).
    [CrossRef]
  6. W. K. Jeitschko, Naturwiss. 57, 544 (1970); Acta Crystallogr. B28, 60 (1972).
    [CrossRef]
  7. R. Loudon, Adv. Phys. 13, 423 (1964).
    [CrossRef]
  8. A decrease in the number of Raman modes is expected as the temperature increases through Tc due to the change of crystal symmetry and the halving of the unit cell. In fact, the total number of Raman active optical modes in the orthorhombic phase is 201 of which fifty have A1 symmetry; in the tetragonal phase, a total of sixty-four are allowed, fourteen of which have A1 symmetry. The author is indebted to E. Bromels for the group theoretical analysis.
  9. J. R. Barkley, L. H. Brixner, E. M. Hogan, R. K. Waring, to be published in Ferroelectrics as part of the Proceedings of the IEEE Symposium on Applications of Ferroelectrics (June1971).
  10. The use of highly convergent white light to observe a wall of minimum thickness was suggested by K. A. Haines.
  11. F. J. Baum, private communication.
  12. Observations made by K. A. Haines of this laboratory and B. L. Booth of the Engineering Physics Laboratory.
  13. B. L. Booth, du Pont Engineering Physics Laboratory; private communication.

1972 (1)

C. Kittel, Solid State Commun. 10, 119 (1972).
[CrossRef]

1970 (1)

W. K. Jeitschko, Naturwiss. 57, 544 (1970); Acta Crystallogr. B28, 60 (1972).
[CrossRef]

1968 (1)

P. A. Fleury, S. P. S. Porto, J. Appl. Phys. 39, 1035 (1968); S. R. Chinn et al., Phys. Rev. B3, 1709 (1971); P. A. Fleury, H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970).
[CrossRef]

1966 (1)

H. J. Borchardt, P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).
[CrossRef]

1964 (1)

R. Loudon, Adv. Phys. 13, 423 (1964).
[CrossRef]

1928 (1)

C. V. Raman, Indian J. Phys. 2, 387 (1928).

Barkley, J. R.

J. R. Barkley, L. H. Brixner, E. M. Hogan, R. K. Waring, to be published in Ferroelectrics as part of the Proceedings of the IEEE Symposium on Applications of Ferroelectrics (June1971).

Baum, F. J.

F. J. Baum, private communication.

Bierstedt, P. E.

H. J. Borchardt, P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).
[CrossRef]

Booth, B. L.

B. L. Booth, du Pont Engineering Physics Laboratory; private communication.

Borchardt, H. J.

H. J. Borchardt, P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).
[CrossRef]

Brixner, L. H.

J. R. Barkley, L. H. Brixner, E. M. Hogan, R. K. Waring, to be published in Ferroelectrics as part of the Proceedings of the IEEE Symposium on Applications of Ferroelectrics (June1971).

Fleury, P. A.

P. A. Fleury, S. P. S. Porto, J. Appl. Phys. 39, 1035 (1968); S. R. Chinn et al., Phys. Rev. B3, 1709 (1971); P. A. Fleury, H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970).
[CrossRef]

Hogan, E. M.

J. R. Barkley, L. H. Brixner, E. M. Hogan, R. K. Waring, to be published in Ferroelectrics as part of the Proceedings of the IEEE Symposium on Applications of Ferroelectrics (June1971).

Jeitschko, W. K.

W. K. Jeitschko, Naturwiss. 57, 544 (1970); Acta Crystallogr. B28, 60 (1972).
[CrossRef]

Kittel, C.

C. Kittel, Solid State Commun. 10, 119 (1972).
[CrossRef]

Loudon, R.

R. Loudon, Adv. Phys. 13, 423 (1964).
[CrossRef]

Porto, S. P. S.

P. A. Fleury, S. P. S. Porto, J. Appl. Phys. 39, 1035 (1968); S. R. Chinn et al., Phys. Rev. B3, 1709 (1971); P. A. Fleury, H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970).
[CrossRef]

Raman, C. V.

C. V. Raman, Indian J. Phys. 2, 387 (1928).

Waring, R. K.

J. R. Barkley, L. H. Brixner, E. M. Hogan, R. K. Waring, to be published in Ferroelectrics as part of the Proceedings of the IEEE Symposium on Applications of Ferroelectrics (June1971).

Adv. Phys. (1)

R. Loudon, Adv. Phys. 13, 423 (1964).
[CrossRef]

Appl. Phys. Lett. (1)

H. J. Borchardt, P. E. Bierstedt, Appl. Phys. Lett. 8, 50 (1966).
[CrossRef]

Indian J. Phys. (1)

C. V. Raman, Indian J. Phys. 2, 387 (1928).

J. Appl. Phys. (1)

P. A. Fleury, S. P. S. Porto, J. Appl. Phys. 39, 1035 (1968); S. R. Chinn et al., Phys. Rev. B3, 1709 (1971); P. A. Fleury, H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970).
[CrossRef]

Naturwiss. (1)

W. K. Jeitschko, Naturwiss. 57, 544 (1970); Acta Crystallogr. B28, 60 (1972).
[CrossRef]

Solid State Commun. (1)

C. Kittel, Solid State Commun. 10, 119 (1972).
[CrossRef]

Other (7)

A comprehensive collection of recent work is published in Light Scattering Spectra of Solids, Proceedings of the International Conference on Light Scattering, New York, G. B. Wright, Ed. (Springer Verlag, New York, 1968).

A decrease in the number of Raman modes is expected as the temperature increases through Tc due to the change of crystal symmetry and the halving of the unit cell. In fact, the total number of Raman active optical modes in the orthorhombic phase is 201 of which fifty have A1 symmetry; in the tetragonal phase, a total of sixty-four are allowed, fourteen of which have A1 symmetry. The author is indebted to E. Bromels for the group theoretical analysis.

J. R. Barkley, L. H. Brixner, E. M. Hogan, R. K. Waring, to be published in Ferroelectrics as part of the Proceedings of the IEEE Symposium on Applications of Ferroelectrics (June1971).

The use of highly convergent white light to observe a wall of minimum thickness was suggested by K. A. Haines.

F. J. Baum, private communication.

Observations made by K. A. Haines of this laboratory and B. L. Booth of the Engineering Physics Laboratory.

B. L. Booth, du Pont Engineering Physics Laboratory; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of Raman spectrometer.

Fig. 2
Fig. 2

Single crystal plate of GMO designed to move a single domain wall through the laser beam when an ac voltage is applied to the transparent electrodes shown. The crystal was rigidly cemented along the back edge to a sample holder to allow for precise positioning in the laser beam.

Fig. 3
Fig. 3

Stokes Raman spectra of A1 phonons in GMO. Figures (a) and (b) show measurements of the orthorhombic and tetragonal phases, respectively. Figures (c) and (d) show ac measurements with detector at ω and 2ω, respectively, where ω is the modulation frequency of the wall. Figure (c) shows differences between the scattering in the two domains on either side of the wall, and Figure (d) shows differences in scattering between the wall and the orthorhombic phase. The noise variations in (c) and (d) are caused by the shot-noise increase at the peaks in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω L = ω S ± ω E ,
k L = k S + k E ,

Metrics