Abstract

The Raman optical radar measurements of the atmosphere presented demonstrate that the technique may be used to obtain quantitative measurements of the spatial distribution of individual atmospheric molecular trace constituents, in particular water vapor, as well as those of the major constituents. In addition, it is shown that monitoring Raman signals from atmospheric nitrogen aids in interpreting elastic scattering measurements by eliminating attenuation effects. In general, the experimental results show good agreement with independent meteorological measurements. Finally, experimental data are utilized to estimate the Raman backscatter cross section for water vapor excited at 3471.5 Å as σH2O/σN2=3.8±25%.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Grams, J. Atmos. Terrest. Phys. 32, 729 (1970).
    [CrossRef]
  2. R. T. H. Collis, Appl. Opt. 9, 1783 (1970).
    [CrossRef]
  3. D. A. Leonard, Nature 216, 142 (1967).
    [CrossRef]
  4. J. A. Cooney, J. Appl. Meteorol. 9, 182 (1970).
    [CrossRef]
  5. S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
    [CrossRef]
  6. T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
    [CrossRef]
  7. V. E. Derr, C. G. Little, Appl. Opt. 9, 1976 (1970).
    [CrossRef] [PubMed]
  8. L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.
  9. G. Placzek, Handbuch der Radiologie, Erich Marx, Ed. (Akademische Verlagsgesellschaft VI, Leipzig, 1934), Vol. 2, p. 209, UCRL Translation 526(L).
  10. G. Herzberg, Spectra of Diatomic Molecules (Prentice-Hall, New York, 1949).
  11. E. J. Stansbury, M. F. Crawford, H. L. Welsh, Can. J. Phys. 31, 954 (1953).
    [CrossRef]
  12. S. H. Melfi, Raman Backscatter of Laser Radiation in the Earth’s Atmosphere, Ph. D. Dissertation, College of William and Mary, Williamsburg, Virginia (1970).

1970

G. W. Grams, J. Atmos. Terrest. Phys. 32, 729 (1970).
[CrossRef]

R. T. H. Collis, Appl. Opt. 9, 1783 (1970).
[CrossRef]

J. A. Cooney, J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

V. E. Derr, C. G. Little, Appl. Opt. 9, 1976 (1970).
[CrossRef] [PubMed]

1969

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

1967

D. A. Leonard, Nature 216, 142 (1967).
[CrossRef]

1953

E. J. Stansbury, M. F. Crawford, H. L. Welsh, Can. J. Phys. 31, 954 (1953).
[CrossRef]

Collis, R. T. H.

R. T. H. Collis, Appl. Opt. 9, 1783 (1970).
[CrossRef]

Cooney, J. A.

J. A. Cooney, J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

Crawford, M. F.

E. J. Stansbury, M. F. Crawford, H. L. Welsh, Can. J. Phys. 31, 954 (1953).
[CrossRef]

Derr, V. E.

Egami, R.

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

Elliott, W. P.

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

Grams, G. W.

G. W. Grams, J. Atmos. Terrest. Phys. 32, 729 (1970).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules (Prentice-Hall, New York, 1949).

Inaba, H.

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

Kobayasi, T.

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

Leonard, D. A.

D. A. Leonard, Nature 216, 142 (1967).
[CrossRef]

Little, C. G.

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

S. H. Melfi, Raman Backscatter of Laser Radiation in the Earth’s Atmosphere, Ph. D. Dissertation, College of William and Mary, Williamsburg, Virginia (1970).

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

Olsson, L. E.

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

Placzek, G.

G. Placzek, Handbuch der Radiologie, Erich Marx, Ed. (Akademische Verlagsgesellschaft VI, Leipzig, 1934), Vol. 2, p. 209, UCRL Translation 526(L).

Stansbury, E. J.

E. J. Stansbury, M. F. Crawford, H. L. Welsh, Can. J. Phys. 31, 954 (1953).
[CrossRef]

Tuft, W. L.

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

Welsh, H. L.

E. J. Stansbury, M. F. Crawford, H. L. Welsh, Can. J. Phys. 31, 954 (1953).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1969).
[CrossRef]

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

Can. J. Phys.

E. J. Stansbury, M. F. Crawford, H. L. Welsh, Can. J. Phys. 31, 954 (1953).
[CrossRef]

J. Appl. Meteorol.

J. A. Cooney, J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

J. Atmos. Terrest. Phys.

G. W. Grams, J. Atmos. Terrest. Phys. 32, 729 (1970).
[CrossRef]

Nature

D. A. Leonard, Nature 216, 142 (1967).
[CrossRef]

Other

L. E. Olsson, W. L. Tuft, W. P. Elliott, R. Egami, M. P. McCormick, S. H. Melfi, Paper 71–96, Air Pollution Control Association, 64th Annual Meeting Atlantic City, N.J., 27 June–2 July 1971.

G. Placzek, Handbuch der Radiologie, Erich Marx, Ed. (Akademische Verlagsgesellschaft VI, Leipzig, 1934), Vol. 2, p. 209, UCRL Translation 526(L).

G. Herzberg, Spectra of Diatomic Molecules (Prentice-Hall, New York, 1949).

S. H. Melfi, Raman Backscatter of Laser Radiation in the Earth’s Atmosphere, Ph. D. Dissertation, College of William and Mary, Williamsburg, Virginia (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Raman backscatter return from the atmosphere as a function of altitude for nitrogen, oxygen, and water vapor.

Fig. 2
Fig. 2

A graph of receiver bandwidth or altitude resolution as a function of maximum altitude for nitrogen, oxygen, and water vapor with signal detection criterion SNR = 2.

Fig. 3
Fig. 3

Raman optical radar receiver system.

Fig. 4
Fig. 4

Typical Raman backscatter return from atmospheric nitrogen.

Fig. 5
Fig. 5

Elastic scattered signal, (Z2V/E), as a function of altitude, showing a cloud base at 1.7 km, taken the night of 2 September 1970.

Fig. 6
Fig. 6

Raman scattering, (Z2V/E), averaged over a number of laser firings from water vapor and nitrogen, taken the night of 2 September 1971.

Fig. 7
Fig. 7

Typical backscatter profiles, (Z2V/E), from the atmosphere; Δ, nitrogen, average of eight oscillograms, 27 August 1970; ○, water vapor, average of six oscillograms, 27 August 1970; □, aerosol, average of six oscillograms, with two no. 1 n.d. filters, 27 August 1970; ——, calculated return, nitrogen (Z2V/E).

Fig. 8
Fig. 8

Optical radar measurement of water vapor mixing ratio compared with standard balloon-sonde data.

Fig. 9
Fig. 9

Optical radar measurement of water vapor mixing ratio compared with standard balloon-sonde data.

Fig. 10
Fig. 10

Elastic scattering ratio as a function of altitude compared with standard balloon-sonde data, 27 August 1970; □ laser radar, elastic scattering ratio; ———, balloon sonde, water vapor, w; – – – – –, temperature profile, T.

Tables (1)

Tables Icon

Table I Typical Parameters for the Raman Optical Radar

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

i ( Z ) = γ ( λ R ) η ( λ R ) c E A 2 Z 2 σ λ R n ( Z ) q ( λ 0 , Z ) q ( λ R , Z ) ,
exp [ 0 Z β ( Z ) d Z ] ,
σ ( 3777 Å ) N 2 = 2.5 × 10 30 cm 2 sr 1
σ ( 3669 Å ) O 2 = 3.0 × 10 30 cm 2 sr 1 .
σ ( 3976 Å ) H 2 O = 9.5 × 10 30 cm 2 sr 1 ± 25 % .
i = 4 e Δ f + [ 16 e 2 Δ f 2 + 8 e ( i D + i B ) Δ f ] 1 2 ,
i s ( Z ) H 2 O i s ( Z ) N 2 = V ( Z ) H 2 O V ( Z ) N 2 = γ ( λ H 2 O ) η ( λ H 2 O ) E H 2 O σ H 2 O n ( Z ) H 2 O q ( λ H 2 O , Z ) γ ( λ N 2 ) η ( λ N 2 ) E N 2 σ N 2 n ( Z ) N 2 q ( λ N 2 , Z ) .
σ H 2 O / σ N 2 = 3.8 ± 25 % .
[ V λ 0 ( Z ) / V N 2 ( Z ) ] 1 + [ f a ( Z ) / σ λ 0 n m ( Z ) ]
q ( λ 0 , Z ) = q ( λ N 2 , Z ) ,

Metrics