Abstract

A technique is described for measuring the rate of photobleaching of anisotropic dye molecules in solid polymer matrices. Three dyes of different classes in two matrices (PMMA and epoxy resin) show bleaching rates that differ by a factor of 20. The bleaching rate is linearly proportional to the intensity of incident radiation, indicating a one-photon process; bleaching is probably due to a chemical reaction of the dye in its first excited singlet or lowest triplet state.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kosar, Light-Sensitive Systems (Wiley, New York, 1965).
  2. E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE7, 178 (1971).
  3. I. P. Kaminow, H. P. Weber, E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).
  4. H. Meier, “Photochemistry of Dyes,” in The Chemistry of Synthetic Dyes, K. Venkataraman, Ed. (Academic Press, New York, 1971), Vol. 4.
  5. J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966), p. 592.
  6. G. C. Pimentel, in Formation and Trapping of Free Radicals, A. M. Bass, H. P. Broida, Eds. (Academic Press, New York, 1960), Chap. 4.
  7. R. L. Fork, Z. Kaplan, BTL; to be published.
  8. W. J. Tomlinson, Appl. Opt. 11, 823 (1972).
  9. H. W. Grimmel, in Organic Chemistry, H. Gilman, Ed. (Wiley, New York, 1953), Vol. 3, Chap. 5, p. 322.
  10. W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).
  11. B. B. Snavely, Proc. IEEE 57, 1374 (1969).

1972 (1)

1971 (2)

E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE7, 178 (1971).

I. P. Kaminow, H. P. Weber, E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).

1970 (1)

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

1969 (1)

B. B. Snavely, Proc. IEEE 57, 1374 (1969).

Calvert, J. G.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966), p. 592.

Chandross, E. A.

I. P. Kaminow, H. P. Weber, E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

Dienes, A.

E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE7, 178 (1971).

Fork, R. L.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

R. L. Fork, Z. Kaplan, BTL; to be published.

Grimmel, H. W.

H. W. Grimmel, in Organic Chemistry, H. Gilman, Ed. (Wiley, New York, 1953), Vol. 3, Chap. 5, p. 322.

Ippen, E. P.

E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE7, 178 (1971).

Kaminow, I. P.

I. P. Kaminow, H. P. Weber, E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

Kaplan, Z.

R. L. Fork, Z. Kaplan, BTL; to be published.

Kosar, J.

J. Kosar, Light-Sensitive Systems (Wiley, New York, 1965).

Meier, H.

H. Meier, “Photochemistry of Dyes,” in The Chemistry of Synthetic Dyes, K. Venkataraman, Ed. (Academic Press, New York, 1971), Vol. 4.

Pimentel, G. C.

G. C. Pimentel, in Formation and Trapping of Free Radicals, A. M. Bass, H. P. Broida, Eds. (Academic Press, New York, 1960), Chap. 4.

Pitts, J. N.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966), p. 592.

Shank, C. V.

E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE7, 178 (1971).

Silfvast, W. T.

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

Snavely, B. B.

B. B. Snavely, Proc. IEEE 57, 1374 (1969).

Tomlinson, W. J.

W. J. Tomlinson, Appl. Opt. 11, 823 (1972).

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

Weber, H. P.

I. P. Kaminow, H. P. Weber, E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

I. P. Kaminow, H. P. Weber, E. A. Chandross, Appl. Phys. Lett. 18, 497 (1971).

W. J. Tomlinson, I. P. Kaminow, E. A. Chandross, R. L. Fork, W. T. Silfvast, Appl. Phys. Lett. 16, 486 (1970).

IEEE J. Quantum Electron. (1)

E. P. Ippen, C. V. Shank, A. Dienes, IEEE J. Quantum Electron. QE7, 178 (1971).

Proc. IEEE (1)

B. B. Snavely, Proc. IEEE 57, 1374 (1969).

Other (6)

J. Kosar, Light-Sensitive Systems (Wiley, New York, 1965).

H. Meier, “Photochemistry of Dyes,” in The Chemistry of Synthetic Dyes, K. Venkataraman, Ed. (Academic Press, New York, 1971), Vol. 4.

J. G. Calvert, J. N. Pitts, Photochemistry (Wiley, New York, 1966), p. 592.

G. C. Pimentel, in Formation and Trapping of Free Radicals, A. M. Bass, H. P. Broida, Eds. (Academic Press, New York, 1960), Chap. 4.

R. L. Fork, Z. Kaplan, BTL; to be published.

H. W. Grimmel, in Organic Chemistry, H. Gilman, Ed. (Wiley, New York, 1953), Vol. 3, Chap. 5, p. 322.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Theoretical time dependence of transmission through an isotropic bleaching dye for T ( 0 ) = 1 2: (a) linear, (b) logarithmic.

Fig. 2
Fig. 2

Experimental arrangement.

Tables (1)

Tables Icon

Table I Summary of Measurements

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n ( z , t ) = n I N exp [ σ J ( z , t ) ] ,
J ( z , t ) = 0 z N ( z , t ) d z ,
N ˙ ( z , t ) = σ B 1 N ( z , t ) n ( z , t ) ,
J ˙ ( L , t ) = n I N B 1 0 L σ N exp [ 0 z σ N d z ] d z , = n I N B 1 { 1 exp [ σ J ( L , t ) ] } .
J ( L , t ) = σ 1 ln { 1 + ( e σ N D L 1 ) exp [ ( σ n I N / B ) t ] } .
T ( t ) = n ( L , t ) / n I N = { 1 + [ T ( 0 ) 1 1 ] e β t } 1 ,
β = σ n I N B 1 .
B = σ n I N T ( 0 ) [ 1 T ( 0 ) ] / T ˙ ( 0 ) .
T ˙ ( t ) = σ T J ˙
ln [ T ( t ) 1 1 ] = ln [ T ( 0 ) 1 1 ] β t ,
n I N = P I N λ / A h c ,
J ( z , t ) = 1 2 0 1 1 z ν 2 N ( ν , z , t ) d ν d z .
J ˙ ( L , 0 ) = 1 2 σ p n I N N D B 1 0 L 1 1 ν 4 exp ( 1 3 σ p N D z ) d ν d z = 3 5 n I N B 1 [ 1 exp ( 1 3 σ p N D L ) ] .
B = 3 5 σ p n I N { T ( 0 ) [ 1 T ( 0 ) ] / T ˙ ( 0 ) } ,
β = 3 5 σ p n I N B 1 = 9 5 σ n I N B 1

Metrics