Abstract

The noise in dark and illuminated Schottky barrier and diffused PIN non-guard-ring photodiodes has been measured between 0.1 Hz and 10 kHz and compared to theory with an excellent fit. It is shown that diodes used photovoltaically are free of 1/f noise in the dark. It is also demonstrated that there is an optimum bias (ca. 100 mV) for minimum noise equivalent power. When only a resistive load is used with a detector, it often determines the frequency response and noise of the detector circuit. We develop and demonstrate equations for the major improvements in both noise and frequency response that can be obtained using a current mode (inverting) operational amplifier.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Fisher, Appl. Opt. 7, 1079 (1968).
    [CrossRef] [PubMed]
  2. P. G. Witherell, M. E. Faulhaber, Appl. Opt. 9, 73 (1970).
    [CrossRef] [PubMed]
  3. U. F. Gianola, J. Appl. Phys. 27, 51 (1956).
    [CrossRef]
  4. G. L. Pearson, H. C. Montgomery, W. L. Feldmann, J. Appl. Phys. 27, 91 (1956).
    [CrossRef]
  5. A. J. Tuzzolino et al., J. Appl. Phys. 33, 148 (1961).
    [CrossRef]
  6. R. J. McIntyre, IEEE Trans. Electron Devices ED-13, 164 (1966).
    [CrossRef]
  7. R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 987 (1966).
    [CrossRef]
  8. R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 383 (1966).
    [CrossRef]
  9. A. van der Zeil, Proc. IEEE 58, 1178 (1970).
    [CrossRef]
  10. P. Wendland, Electro-Optical System Design 48 (Aug.1970).
  11. R. A. Perala, A. van der Zeil, IEEE Trans. Electron Devices (Correspondence) ED-13, 172 (1967).
    [CrossRef]
  12. Peter O. Lauritzen, UEEE Trans. Electron Devices ED-15, 770 (1968).
    [CrossRef]
  13. C. T. J. Alkemade, Physica 25, 1145 (1959).
    [CrossRef]
  14. B. J. Faraday, R. L. Statler, R. V. Tauke, Proc. IEEE 56, 31 (1968).
    [CrossRef]
  15. D. Wolf, E. Holler, J. Appl. Phys. 38, 189 (1967).
    [CrossRef]
  16. P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (Wiley, New York, 1962).
  17. A. van der Zeil, Proc. IEEE 58, 1191 (1970).
  18. E. A. Faulkner, Radio Electronic Eng. 36, 17 (July1968).
    [CrossRef]
  19. L. Smith, D. H. Sheingold, Analog Dialogue 3, 1 (Mar.1969).
  20. H. A. Haus, Proc. IRE 48, 69 (1960).
    [CrossRef]
  21. Applications Manual for Computing Amplifiers (Philbrick/Nexus Research, Deedham, Mass., 1966, 2d ed.
  22. J. J. D’Azzo, C. H. Houpis, Feedback Control System Analysis and Synthesis (McGraw-Hill, New York, 1966, 2d ed., pp. 76–83.
  23. R. W. Demrow, Analog Dialogue 4, 1 (June1970).
  24. S. K. Mitra, Analysis and Synthesis of Linear Active Networks (Wiley, New York, 1969).
  25. G. A. Korn, Random-Process Simulation and Measurements (McGraw-Hill, New York, 1966).
  26. Texas Instruments, Noise in Precision Film Resistors, Bulletin CA-84 (no date).

1970 (5)

P. G. Witherell, M. E. Faulhaber, Appl. Opt. 9, 73 (1970).
[CrossRef] [PubMed]

A. van der Zeil, Proc. IEEE 58, 1178 (1970).
[CrossRef]

P. Wendland, Electro-Optical System Design 48 (Aug.1970).

A. van der Zeil, Proc. IEEE 58, 1191 (1970).

R. W. Demrow, Analog Dialogue 4, 1 (June1970).

1969 (1)

L. Smith, D. H. Sheingold, Analog Dialogue 3, 1 (Mar.1969).

1968 (4)

E. A. Faulkner, Radio Electronic Eng. 36, 17 (July1968).
[CrossRef]

Peter O. Lauritzen, UEEE Trans. Electron Devices ED-15, 770 (1968).
[CrossRef]

B. J. Faraday, R. L. Statler, R. V. Tauke, Proc. IEEE 56, 31 (1968).
[CrossRef]

R. Fisher, Appl. Opt. 7, 1079 (1968).
[CrossRef] [PubMed]

1967 (2)

R. A. Perala, A. van der Zeil, IEEE Trans. Electron Devices (Correspondence) ED-13, 172 (1967).
[CrossRef]

D. Wolf, E. Holler, J. Appl. Phys. 38, 189 (1967).
[CrossRef]

1966 (3)

R. J. McIntyre, IEEE Trans. Electron Devices ED-13, 164 (1966).
[CrossRef]

R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 987 (1966).
[CrossRef]

R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 383 (1966).
[CrossRef]

1961 (1)

A. J. Tuzzolino et al., J. Appl. Phys. 33, 148 (1961).
[CrossRef]

1960 (1)

H. A. Haus, Proc. IRE 48, 69 (1960).
[CrossRef]

1959 (1)

C. T. J. Alkemade, Physica 25, 1145 (1959).
[CrossRef]

1956 (2)

U. F. Gianola, J. Appl. Phys. 27, 51 (1956).
[CrossRef]

G. L. Pearson, H. C. Montgomery, W. L. Feldmann, J. Appl. Phys. 27, 91 (1956).
[CrossRef]

Alkemade, C. T. J.

C. T. J. Alkemade, Physica 25, 1145 (1959).
[CrossRef]

Baertsch, R. D.

R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 987 (1966).
[CrossRef]

R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 383 (1966).
[CrossRef]

D’Azzo, J. J.

J. J. D’Azzo, C. H. Houpis, Feedback Control System Analysis and Synthesis (McGraw-Hill, New York, 1966, 2d ed., pp. 76–83.

Demrow, R. W.

R. W. Demrow, Analog Dialogue 4, 1 (June1970).

Faraday, B. J.

B. J. Faraday, R. L. Statler, R. V. Tauke, Proc. IEEE 56, 31 (1968).
[CrossRef]

Faulhaber, M. E.

Faulkner, E. A.

E. A. Faulkner, Radio Electronic Eng. 36, 17 (July1968).
[CrossRef]

Feldmann, W. L.

G. L. Pearson, H. C. Montgomery, W. L. Feldmann, J. Appl. Phys. 27, 91 (1956).
[CrossRef]

Fisher, R.

Gianola, U. F.

U. F. Gianola, J. Appl. Phys. 27, 51 (1956).
[CrossRef]

Haus, H. A.

H. A. Haus, Proc. IRE 48, 69 (1960).
[CrossRef]

Holler, E.

D. Wolf, E. Holler, J. Appl. Phys. 38, 189 (1967).
[CrossRef]

Houpis, C. H.

J. J. D’Azzo, C. H. Houpis, Feedback Control System Analysis and Synthesis (McGraw-Hill, New York, 1966, 2d ed., pp. 76–83.

Korn, G. A.

G. A. Korn, Random-Process Simulation and Measurements (McGraw-Hill, New York, 1966).

Kruse, P. W.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (Wiley, New York, 1962).

Lauritzen, Peter O.

Peter O. Lauritzen, UEEE Trans. Electron Devices ED-15, 770 (1968).
[CrossRef]

McGlauchlin, L. D.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (Wiley, New York, 1962).

McIntyre, R. J.

R. J. McIntyre, IEEE Trans. Electron Devices ED-13, 164 (1966).
[CrossRef]

McQuistan, R. B.

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (Wiley, New York, 1962).

Mitra, S. K.

S. K. Mitra, Analysis and Synthesis of Linear Active Networks (Wiley, New York, 1969).

Montgomery, H. C.

G. L. Pearson, H. C. Montgomery, W. L. Feldmann, J. Appl. Phys. 27, 91 (1956).
[CrossRef]

Pearson, G. L.

G. L. Pearson, H. C. Montgomery, W. L. Feldmann, J. Appl. Phys. 27, 91 (1956).
[CrossRef]

Perala, R. A.

R. A. Perala, A. van der Zeil, IEEE Trans. Electron Devices (Correspondence) ED-13, 172 (1967).
[CrossRef]

Sheingold, D. H.

L. Smith, D. H. Sheingold, Analog Dialogue 3, 1 (Mar.1969).

Smith, L.

L. Smith, D. H. Sheingold, Analog Dialogue 3, 1 (Mar.1969).

Statler, R. L.

B. J. Faraday, R. L. Statler, R. V. Tauke, Proc. IEEE 56, 31 (1968).
[CrossRef]

Tauke, R. V.

B. J. Faraday, R. L. Statler, R. V. Tauke, Proc. IEEE 56, 31 (1968).
[CrossRef]

Tuzzolino, A. J.

A. J. Tuzzolino et al., J. Appl. Phys. 33, 148 (1961).
[CrossRef]

van der Zeil, A.

A. van der Zeil, Proc. IEEE 58, 1178 (1970).
[CrossRef]

A. van der Zeil, Proc. IEEE 58, 1191 (1970).

R. A. Perala, A. van der Zeil, IEEE Trans. Electron Devices (Correspondence) ED-13, 172 (1967).
[CrossRef]

Wendland, P.

P. Wendland, Electro-Optical System Design 48 (Aug.1970).

Witherell, P. G.

Wolf, D.

D. Wolf, E. Holler, J. Appl. Phys. 38, 189 (1967).
[CrossRef]

Analog Dialogue (2)

L. Smith, D. H. Sheingold, Analog Dialogue 3, 1 (Mar.1969).

R. W. Demrow, Analog Dialogue 4, 1 (June1970).

Appl. Opt. (2)

Electro-Optical System Design (1)

P. Wendland, Electro-Optical System Design 48 (Aug.1970).

IEEE Trans. Electron Devices (3)

R. J. McIntyre, IEEE Trans. Electron Devices ED-13, 164 (1966).
[CrossRef]

R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 987 (1966).
[CrossRef]

R. D. Baertsch, IEEE Trans. Electron Devices ED-13, 383 (1966).
[CrossRef]

IEEE Trans. Electron Devices (Correspondence) (1)

R. A. Perala, A. van der Zeil, IEEE Trans. Electron Devices (Correspondence) ED-13, 172 (1967).
[CrossRef]

J. Appl. Phys. (4)

D. Wolf, E. Holler, J. Appl. Phys. 38, 189 (1967).
[CrossRef]

U. F. Gianola, J. Appl. Phys. 27, 51 (1956).
[CrossRef]

G. L. Pearson, H. C. Montgomery, W. L. Feldmann, J. Appl. Phys. 27, 91 (1956).
[CrossRef]

A. J. Tuzzolino et al., J. Appl. Phys. 33, 148 (1961).
[CrossRef]

Physica (1)

C. T. J. Alkemade, Physica 25, 1145 (1959).
[CrossRef]

Proc. IEEE (3)

B. J. Faraday, R. L. Statler, R. V. Tauke, Proc. IEEE 56, 31 (1968).
[CrossRef]

A. van der Zeil, Proc. IEEE 58, 1191 (1970).

A. van der Zeil, Proc. IEEE 58, 1178 (1970).
[CrossRef]

Proc. IRE (1)

H. A. Haus, Proc. IRE 48, 69 (1960).
[CrossRef]

Radio Electronic Eng. (1)

E. A. Faulkner, Radio Electronic Eng. 36, 17 (July1968).
[CrossRef]

UEEE Trans. Electron Devices (1)

Peter O. Lauritzen, UEEE Trans. Electron Devices ED-15, 770 (1968).
[CrossRef]

Other (6)

P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology (Wiley, New York, 1962).

Applications Manual for Computing Amplifiers (Philbrick/Nexus Research, Deedham, Mass., 1966, 2d ed.

J. J. D’Azzo, C. H. Houpis, Feedback Control System Analysis and Synthesis (McGraw-Hill, New York, 1966, 2d ed., pp. 76–83.

S. K. Mitra, Analysis and Synthesis of Linear Active Networks (Wiley, New York, 1969).

G. A. Korn, Random-Process Simulation and Measurements (McGraw-Hill, New York, 1966).

Texas Instruments, Noise in Precision Film Resistors, Bulletin CA-84 (no date).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross-sectional schematic view of Schottky barrier PIN and planar diffused photodiodes studied.

Fig. 2
Fig. 2

Volt–ampere curves for a photodiode at several illumination levels.

Fig. 3
Fig. 3

Schematic for amplifier used for measurements. Power supply voltages are supplied from low noise voltage regulators.

Fig. 4
Fig. 4

Lumped parameter model of photodiode and amplifier.

Fig. 5
Fig. 5

(a) Reduced model showing those parameters needed to compute frequency response. (b) Assumed amplitude response portion of operational open-loop transfer function.

Fig. 6
Fig. 6

Model used to compute noise contributions of each noise source.

Fig. 7
Fig. 7

Equipment used to measure noise in photodiode.

Fig. 8
Fig. 8

Typical dark noise for a 0.051-cm2 active area diffused diode. Data have been corrected for noise of amplifier and feedback resistor.

Fig. 9
Fig. 9

Measured noise of a diffused diode at room temperature when illuminated from an incandescent source.

Fig. 10
Fig. 10

Measured impedance and responsivity of 1.25-cm2 Schottky diode used to predict the diode’s N.E.P., which is shown at the top of the figure. The points are measured.

Fig. 11
Fig. 11

Graphical presentation of noise sources and there sultant noise. Measured data are within the 30% experimental error of the top curve.

Tables (1)

Tables Icon

Table I Shot Noise Only Region

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

r d = e d / i d ,
R s = ( e d e i ) / i d ,
i d n = [ ( 4 K T B / r d ) + 2 e i d B ] 1 2 ,
i c n 2 = f 1 f 2 K i d β f α d f ,
i c n = [ K i d β ln ( f 2 / f 1 ) ] 1 2 .
i d n = [ i d n 2 + i c n 2 ] 1 2 .
i f n = ( 4 K T B / R f ) 1 2 .
G ( s ) = A / ( 1 + s T ) ,
GBP = ω H / 2 π = A / 2 π T ,
G i = 1 / R i = ( r d + R 1 ) / R 1 R d ,
G f = 1 / R f ,
e n = i n = i d n = i 1 n = i f n = 0 ,
C i = C d + C 1 + C 2 ,
E s = E b = 0 ,
i d e i ( G i + s C i ) + ( e 0 e i ) ( G f + s C f ) = 0.
i d + e 0 ( [ ( T s + 1 ) / A ] ( G i + s C i ) + e 0 { 1 + [ ( T s + 1 ) / A ] } ( G f + s C f ) ) = 0
e 0 / i d = 1 / [ s 2 ( T / A ) ( C i + C f ) + s ( T / A ) ( G i + G f ) + s ( 1 / A ) ( C i + C f ) + s C f + ( 1 / A ) ( G i + G f ) + G f ] .
A ( s ) = e 0 / i d = R f / { s 2 ( R f / ω H ) ( C i + C f ) + s [ R f C f + ( 1 / ω H ) + ( R f / R i ω H ) ] + 1 } .
( 1 / ω n 2 ) s 2 + ( 2 d / ω n ) s + 1 ,
ω n = [ ω H / R f ( C i + C f ) ] 1 2 ,
d 1 2 [ R f C f + ( 1 / ω H ) + ( R f / R i ω H ) ] [ ω H / R f ( C i + C f ) ] 1 2 .
d 1 2 [ R f C f 2 ω H / ( C i + C f ) ] 1 2 .
C f = [ 2 d 2 ± 2 d ( d 2 + R f ω H C i ) 1 2 ] / R f ω H ,
ω n ω H { 1 / [ R f C i ω H + 2 d 2 + 2 d ( d 2 + R f C i ω H ) 1 2 } 1 2 .
i N = [ i n 2 + i 1 n 2 + i d n 2 + ( e s n / R 1 ) 2 ] 1 2 .
e f n = i f n [ 1 / ( G f + s C f ) ]
B ( s ) = e f n / i f n = 1 / ( G f + s C f ) .
( e i + e n ) ( G i + s C i ) + ( e 0 e i e n ) ( G f + s C f ) = 0.
C ( s ) = e 0 / e n = [ ( R f / R i ) + 1 ] × { s [ R i R f / ( R i + R f ) ] ( C i + C f ) + 1 } / { s 2 ( R f / ω H ) ( C i + C f ) + s [ ( 1 / ω H ) + ( R f / ω H R i ) + R f C f ] + 1 } ,
f 1 / 2 π [ R i R f / ( R i + R f ) ] ( C i + C f ) .
D ( s ) = e 0 / e b n = ( 1 / r d + s C d ) / ( ( s 2 / ω H ) ( C d + C f ) + s { ( 1 / ω H ) [ ( 1 / r d ) + ( 1 / r f ) ] + C f } + ( 1 / R f ) ) .
f 1 / 2 π r d C d .
e 0 n = { ω 1 ω 2 [ | A ( j ω ) i N ( ω ) | 2 + | B ( j ω ) i f n ( ω ) | 2 + | C ( j ω ) e n ( ω ) | 2 ] + | D ( j ω ) e b n ( ω ) | 2 d ω } 1 2 ,
N . E . P = i d n / R ( W ) ,

Metrics