Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  2. R. A. Jones, “An Advanced Method of Determining Modulation Transfer Function by Edge Gradient Analysis,” Paper presented at the 1966 Conference of the Society of Photographic Scientists and Engineers.
  3. F. Scott et al., Photo Sci. and Engr. 7, 345 (1963).
  4. R. A. Jones, J. F. Coghlin, Appl. Opt. 5, 1411 (1966).
    [Crossref] [PubMed]
  5. R. V. Shack, J. Res. Nat. Bur. Stand. 56, 249 (1956).
  6. G. C. Higgins, Photo Sci. and Engr., 15, 106 (1971).
  7. C. R. Rao, Linear Statistical Inference and Its Application (Wiley, New York, 1965).
  8. P. L. Smith, “A New Technique for Estimating the Modulation Transfer Function of an Imaging System from its Edge Response,” The Aerospace Corporation Technical Report TR-0172(2441-02)-4 (1971).

1971 (1)

G. C. Higgins, Photo Sci. and Engr., 15, 106 (1971).

1966 (1)

1963 (1)

F. Scott et al., Photo Sci. and Engr. 7, 345 (1963).

1956 (1)

R. V. Shack, J. Res. Nat. Bur. Stand. 56, 249 (1956).

Coghlin, J. F.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Higgins, G. C.

G. C. Higgins, Photo Sci. and Engr., 15, 106 (1971).

Jones, R. A.

R. A. Jones, J. F. Coghlin, Appl. Opt. 5, 1411 (1966).
[Crossref] [PubMed]

R. A. Jones, “An Advanced Method of Determining Modulation Transfer Function by Edge Gradient Analysis,” Paper presented at the 1966 Conference of the Society of Photographic Scientists and Engineers.

Rao, C. R.

C. R. Rao, Linear Statistical Inference and Its Application (Wiley, New York, 1965).

Scott, F.

F. Scott et al., Photo Sci. and Engr. 7, 345 (1963).

Shack, R. V.

R. V. Shack, J. Res. Nat. Bur. Stand. 56, 249 (1956).

Smith, P. L.

P. L. Smith, “A New Technique for Estimating the Modulation Transfer Function of an Imaging System from its Edge Response,” The Aerospace Corporation Technical Report TR-0172(2441-02)-4 (1971).

Appl. Opt. (1)

J. Res. Nat. Bur. Stand. (1)

R. V. Shack, J. Res. Nat. Bur. Stand. 56, 249 (1956).

Photo Sci. and Engr. (2)

G. C. Higgins, Photo Sci. and Engr., 15, 106 (1971).

F. Scott et al., Photo Sci. and Engr. 7, 345 (1963).

Other (4)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

R. A. Jones, “An Advanced Method of Determining Modulation Transfer Function by Edge Gradient Analysis,” Paper presented at the 1966 Conference of the Society of Photographic Scientists and Engineers.

C. R. Rao, Linear Statistical Inference and Its Application (Wiley, New York, 1965).

P. L. Smith, “A New Technique for Estimating the Modulation Transfer Function of an Imaging System from its Edge Response,” The Aerospace Corporation Technical Report TR-0172(2441-02)-4 (1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g ( z ) = f ( z ) i = 0 n c i H i ( z ) ,
z = x μ σ ; f ( z ) = 1 ( 2 π ) 1 2 exp { z 2 2 } , H 0 ( z ) = 1 ; H 1 ( z ) = z , H 2 ( z ) = z 2 1 ; H 3 ( z ) = z 2 3 z ; etc .
G ( z ) z g ( z ) d z = c 0 F ( z ) f ( z ) i = 0 n 1 c i + 1 H i ( z ) ,
T ( ω ) = | F [ g ( x ) ] ( ω ) | F [ g ( x ) ] ( 0 ) .
T ( ω ) = [ A 2 ( σ ω ) + B 2 ( σ ω ) ] 1 2 A ( 0 ) exp { ( σ ω ) 2 2 } ,
A ( ω ) = ( c 0 c 2 + 3 c 4 ) + ( 6 c 4 c 2 ) H 2 ( ω ) + c 4 H 4 ( ω ) ,
B ( ω ) = ( 3 c 3 c 1 ) H 1 ( ω ) + c 3 H 3 ( ω ) .
J = 1 2 j = 1 K i = 1 N [ M i j c 0 F ( z i j ) f ( z i j ) i = 0 n 1 c i + 1 H i ( z i j ) ] 2 , z i j = ( i Δ μ j ) / σ

Metrics