Abstract

Experimental results are reported that show the effects of the self-induced thermal lens due to a high power laser beam on imaging or tracking systems viewing along the same propagation path. The thermal distortion effects of a wind are simulated with a low power (≲ 3-W) CO2 laser beam propagating through a cell of liquid CS2 moving across the beam. The resulting image distortion includes a warping effect analogous to the deflection of the CO2 beam, together with a pronounced demagnification of the central portion of the object. An active optical tracker is simulated with a He–Ne laser beam propagating collinearly with the C02 beam. The He–Ne beam pattern returned from a specular target is distorted and sharply confined to the outline of the crescent shaped CO2 beam. Simple ray optics models are used to provide qualitative explanations for the experimental results.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Smith, IEEE J. Quantum Electron QE-5, 600 (1969).
    [CrossRef]
  2. J. Wallace, M. Camac, J. Opt. Soc. Am. 60, 1587 (1970).
    [CrossRef]
  3. F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).
    [CrossRef]
  4. United Aircraft Research Laboratories Report-K921004-4, “Investigation of Self-Induced Thermal Effects of CO2Laser Radiation Propagating in Absorbing Gases,” F. G. Gebhardt, D. C. Smith (July1971).
  5. F. G. Gebhardt, J. H. McCoy, D. C. Smith, IEEE J. Quantum Electron. QE-5, 471 (1969).
    [CrossRef]
  6. F. G. Gebhardt, D. C. Smith, Appl. Opt. 11, 244 (1972).
    [CrossRef] [PubMed]
  7. H. Kogelnik, Bell Syst. Tech. J., 44, 455 (1965).

1972 (1)

1971 (1)

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).
[CrossRef]

1970 (1)

1969 (2)

D. C. Smith, IEEE J. Quantum Electron QE-5, 600 (1969).
[CrossRef]

F. G. Gebhardt, J. H. McCoy, D. C. Smith, IEEE J. Quantum Electron. QE-5, 471 (1969).
[CrossRef]

1965 (1)

H. Kogelnik, Bell Syst. Tech. J., 44, 455 (1965).

Camac, M.

Gebhardt, F. G.

F. G. Gebhardt, D. C. Smith, Appl. Opt. 11, 244 (1972).
[CrossRef] [PubMed]

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).
[CrossRef]

F. G. Gebhardt, J. H. McCoy, D. C. Smith, IEEE J. Quantum Electron. QE-5, 471 (1969).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J., 44, 455 (1965).

McCoy, J. H.

F. G. Gebhardt, J. H. McCoy, D. C. Smith, IEEE J. Quantum Electron. QE-5, 471 (1969).
[CrossRef]

Smith, D. C.

F. G. Gebhardt, D. C. Smith, Appl. Opt. 11, 244 (1972).
[CrossRef] [PubMed]

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).
[CrossRef]

D. C. Smith, IEEE J. Quantum Electron QE-5, 600 (1969).
[CrossRef]

F. G. Gebhardt, J. H. McCoy, D. C. Smith, IEEE J. Quantum Electron. QE-5, 471 (1969).
[CrossRef]

Wallace, J.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J., 44, 455 (1965).

IEEE J. Quantum Electron (1)

D. C. Smith, IEEE J. Quantum Electron QE-5, 600 (1969).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. G. Gebhardt, D. C. Smith, IEEE J. Quantum Electron. QE-7, 63 (1971).
[CrossRef]

F. G. Gebhardt, J. H. McCoy, D. C. Smith, IEEE J. Quantum Electron. QE-5, 471 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (1)

United Aircraft Research Laboratories Report-K921004-4, “Investigation of Self-Induced Thermal Effects of CO2Laser Radiation Propagating in Absorbing Gases,” F. G. Gebhardt, D. C. Smith (July1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Thermal distortion effects on collinear He–Ne laser beam 2.5 cm from CS2 cell.

Fig. 2
Fig. 2

Distorted He–Ne laser beam patterns observed at CS2 cell entrance window after reflection from a specular target.

Fig. 3
Fig. 3

Ray optics model for thermal distortion of collinear tracking beam.

Fig. 4
Fig. 4

Thermal distortion effects on passive imaging.

Fig. 5
Fig. 5

Ray optics model for thermal distortion of passive images.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

N = ( d n / d T ) 2 P z π n 0 ρ c p υ a 3 { 1 [ 1 exp ( α z ) ] α z } ,
Δ n / n 0 = ( π / 2 ) ( α z / f ( α z ) ( a 2 / z 2 ) N ,
f ( α z ) = { 1 [ 1 exp ( α z ) ] α z } .
[ n ( 0 , y ) / n ( 0,0 ) ] 1 + 2 ( y 2 / b 2 ) ,
n ( 0,0 ) = n 0 [ 1 1 2 ( Δ n / n 0 ) ] ,
1 / b 2 = ( 1 / 4 a 2 ) ( Δ n / n 0 ) .
f = { b / [ 2 n 0 sinh 2 ( z / b ) ] } ,
h = ( b / 2 n 0 ) tanh ( z / b ) .
( Δ n / n 0 ) π ( a 2 / z 2 ) N ,
f [ z / ( π n 0 N ) ] ; N 1 ,
h ( z / 2 n 0 ) ; N 1.

Metrics