Abstract

Experimental techniques for optical demultiplexing by use of sinusoidal polarization switches were evaluated. For this purpose the terminals of a twenty-four-channel optical PCM system were simulated by two channels separated in time by 124th the pulse period. The complete twenty-four PCM channels would have an information rate of 6.7 Gbit/sec. The measured values of cross talk in the demultiplexer were −13 dB and −9 dB for the two channels used in the simulated system. The major contributions to the cross talk were (1) intrinsic cross talk due to the use of a sine wave rather than a square wave for polarization switching (−19.6 dB and −13.1 dB); (2) light leakage in the demultiplexer crystals due to rf heating that gives rise to a nonuniform birefringence (−19 dB, both channels); and (3) misadjustment of the demultiplexer.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. S. Kinsel, R. T. Denton, Proc. IEEE 56, 146 (1968).
    [CrossRef]
  2. R. T. Denton, T. S. Kinsel, Proc. IEEE 56, 140 (1968).
    [CrossRef]
  3. G. White, Proc. IEEE (Letters) 58, 1779 (1970).
    [CrossRef]
  4. P. W. Smith, Proc. IEEE 58, 1342 (1970).
    [CrossRef]
  5. F. S. Chen, Proc. IEEE 58, 1440 (1970).
    [CrossRef]
  6. M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
    [CrossRef]
  7. T. S. Kinsel, to be published.
  8. H. Seidel, Bell Telephone Labs., Inc., Murray Hill, N.J., private communication.
  9. D. L. Lyon, T. S. Kinsel, Appl. Phys. Lett. 16, 89 (1970).
    [CrossRef]
  10. YIG isolator supplied by R. P. Morris.
  11. L. M. Osterink, J. D. Foster, Appl. Phys. Lett. 12, 128 (1968).
    [CrossRef]
  12. I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
    [CrossRef]
  13. H. Melchior, W. T. Lynch, IEEE Trans. Electron Devices ED-13, 829 (1966).
    [CrossRef]
  14. F. S. Chen, IEEE J. Quantum Electron. QE-7, 24 (1971).
    [CrossRef]
  15. T. S. Kinsel, F. S. Chen, unpublished.
  16. H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
    [CrossRef]
  17. F. R. Faxvog, General Motors Research Center, Dearborn, Mich., unpublished.
  18. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
    [CrossRef]
  19. H. P. Weber, Phys. Lett. 27A, 321 (1968).
  20. A. W. Smith, A. J. Landon, Appl. Phys. Lett. 17, 340 (1970).
    [CrossRef]
  21. J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
    [CrossRef]
  22. T. S. Kinsel, Proc. IEEE 58, 1666 (1970).
    [CrossRef]

1971

F. S. Chen, IEEE J. Quantum Electron. QE-7, 24 (1971).
[CrossRef]

1970

A. W. Smith, A. J. Landon, Appl. Phys. Lett. 17, 340 (1970).
[CrossRef]

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

T. S. Kinsel, Proc. IEEE 58, 1666 (1970).
[CrossRef]

G. White, Proc. IEEE (Letters) 58, 1779 (1970).
[CrossRef]

P. W. Smith, Proc. IEEE 58, 1342 (1970).
[CrossRef]

F. S. Chen, Proc. IEEE 58, 1440 (1970).
[CrossRef]

D. L. Lyon, T. S. Kinsel, Appl. Phys. Lett. 16, 89 (1970).
[CrossRef]

1968

L. M. Osterink, J. D. Foster, Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

H. P. Weber, Phys. Lett. 27A, 321 (1968).

T. S. Kinsel, R. T. Denton, Proc. IEEE 56, 146 (1968).
[CrossRef]

R. T. Denton, T. S. Kinsel, Proc. IEEE 56, 140 (1968).
[CrossRef]

1967

H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

1966

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

H. Melchior, W. T. Lynch, IEEE Trans. Electron Devices ED-13, 829 (1966).
[CrossRef]

M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
[CrossRef]

Chen, F. S.

F. S. Chen, IEEE J. Quantum Electron. QE-7, 24 (1971).
[CrossRef]

F. S. Chen, Proc. IEEE 58, 1440 (1970).
[CrossRef]

T. S. Kinsel, F. S. Chen, unpublished.

Denton, R. T.

T. S. Kinsel, R. T. Denton, Proc. IEEE 56, 146 (1968).
[CrossRef]

R. T. Denton, T. S. Kinsel, Proc. IEEE 56, 140 (1968).
[CrossRef]

DiDomenico, M.

M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
[CrossRef]

Faxvog, F. R.

F. R. Faxvog, General Motors Research Center, Dearborn, Mich., unpublished.

Foster, J. D.

L. M. Osterink, J. D. Foster, Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

Geusic, J. E.

M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
[CrossRef]

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Goell, J. E.

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

Kinsel, T. S.

D. L. Lyon, T. S. Kinsel, Appl. Phys. Lett. 16, 89 (1970).
[CrossRef]

T. S. Kinsel, Proc. IEEE 58, 1666 (1970).
[CrossRef]

T. S. Kinsel, R. T. Denton, Proc. IEEE 56, 146 (1968).
[CrossRef]

R. T. Denton, T. S. Kinsel, Proc. IEEE 56, 140 (1968).
[CrossRef]

T. S. Kinsel, to be published.

T. S. Kinsel, F. S. Chen, unpublished.

Landon, A. J.

A. W. Smith, A. J. Landon, Appl. Phys. Lett. 17, 340 (1970).
[CrossRef]

Lynch, W. T.

H. Melchior, W. T. Lynch, IEEE Trans. Electron Devices ED-13, 829 (1966).
[CrossRef]

Lyon, D. L.

D. L. Lyon, T. S. Kinsel, Appl. Phys. Lett. 16, 89 (1970).
[CrossRef]

Marcos, H. M.

M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
[CrossRef]

Melchior, H.

H. Melchior, W. T. Lynch, IEEE Trans. Electron Devices ED-13, 829 (1966).
[CrossRef]

Osterink, L. M.

L. M. Osterink, J. D. Foster, Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Seidel, H.

H. Seidel, Bell Telephone Labs., Inc., Murray Hill, N.J., private communication.

Shapiro, S. L.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Smith, A. W.

A. W. Smith, A. J. Landon, Appl. Phys. Lett. 17, 340 (1970).
[CrossRef]

Smith, P. W.

P. W. Smith, Proc. IEEE 58, 1342 (1970).
[CrossRef]

Smith, R. G.

M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
[CrossRef]

Standley, R. D.

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Turner, E. H.

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

Weber, H. P.

H. P. Weber, Phys. Lett. 27A, 321 (1968).

H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

White, G.

G. White, Proc. IEEE (Letters) 58, 1779 (1970).
[CrossRef]

Appl. Phys. Lett.

M. DiDomenico, J. E. Geusic, H. M. Marcos, R. G. Smith, Appl. Phys. Lett. 8, 180 (1966).
[CrossRef]

D. L. Lyon, T. S. Kinsel, Appl. Phys. Lett. 16, 89 (1970).
[CrossRef]

L. M. Osterink, J. D. Foster, Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

A. W. Smith, A. J. Landon, Appl. Phys. Lett. 17, 340 (1970).
[CrossRef]

IEEE J. Quantum Electron.

F. S. Chen, IEEE J. Quantum Electron. QE-7, 24 (1971).
[CrossRef]

IEEE Trans. Electron Devices

H. Melchior, W. T. Lynch, IEEE Trans. Electron Devices ED-13, 829 (1966).
[CrossRef]

J. Appl. Phys.

H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Phys. Lett.

H. P. Weber, Phys. Lett. 27A, 321 (1968).

Proc. IEEE

I. P. Kaminow, E. H. Turner, Proc. IEEE 54, 1374 (1966).
[CrossRef]

T. S. Kinsel, R. T. Denton, Proc. IEEE 56, 146 (1968).
[CrossRef]

R. T. Denton, T. S. Kinsel, Proc. IEEE 56, 140 (1968).
[CrossRef]

P. W. Smith, Proc. IEEE 58, 1342 (1970).
[CrossRef]

F. S. Chen, Proc. IEEE 58, 1440 (1970).
[CrossRef]

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

T. S. Kinsel, Proc. IEEE 58, 1666 (1970).
[CrossRef]

Proc. IEEE (Letters)

G. White, Proc. IEEE (Letters) 58, 1779 (1970).
[CrossRef]

Other

YIG isolator supplied by R. P. Morris.

T. S. Kinsel, to be published.

H. Seidel, Bell Telephone Labs., Inc., Murray Hill, N.J., private communication.

T. S. Kinsel, F. S. Chen, unpublished.

F. R. Faxvog, General Motors Research Center, Dearborn, Mich., unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Waveforms for twenty-four simulated time multiplexed channels. The pulses drawn in solid lines represent the two pulse trains described in the text. The pulses drawn with dashed lines indicate the possible positions of the remaining twenty-two channels.

Fig. 2
Fig. 2

Experimental arrangement. POL polarizer; POL SEP, polarization separator; L, lens; M, mirror, BS, beam splitter; COMP, compensator; PS, phase shifter; AMP, amplifier; FREQ QUAD, frequency quadrupler; SYNCH OSC, synchronized oscillator; MATCH, matching network. The decibel values in boxes indicate the optical loss to the point designated relative to the output of the laser.

Fig. 3
Fig. 3

Operation of the demultiplexer. Top part: electrical driver waveform. Vertical axis is optical retardation. Γ shows the effects on the waveform of adjustments of optical compensator, ϕ shows the effects of adjustments of electrical phase, V P is peak signal amplitude. Middle part: optical pulses into demultiplexer. The dotted pulses indicate the time positions of additional channels. The numbers indicate the output ports at which the pulses would appear. Bottom part: cross talk waveforms due to use of sine wave for driver rather than square wave.

Fig. 4
Fig. 4

Optical waveforms of operating system. Top photographs: outputs of single channels. Middle photograph: multiplexed signal. Bottom photograph: outputs of demultiplexer. Horizontal (all photographs): approximately 1.5 nsec/cm.

Fig. 5
Fig. 5

Outputs of demultiplexer showing cross talk. Left photograph: cross talk from channel A. Right photograph: cross talk from channel B. Horizontal (both photographs) approximately 1.5 nsec/cm.

Fig. 6
Fig. 6

Demultiplexer cross talk as a function of input electrical power.

Fig. 7
Fig. 7

Causes of incorrect drive power. Part (a): improper values of optical compensation and electrical phase. Part (b): improper time separation of the channels. In both parts of the figure waveform 1 is the correct one.

Fig. 8
Fig. 8

Autocorrelation functions of four analytic expressions fitted to experimental data.

Tables (1)

Tables Icon

Table I Results of Fitting Autocorrelation Functions to Experimental Data

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

crosstalk 1 2 = I 1 / ( 1 I 1 ) , crosstalk 2 1 = I 2 / ( 1 I 2 ) ,
I 1 = 1 2 [ 1 J 0 ( 2 π / 3 ) ] 11.1 f τ P k = 1 k J 2 K ( 2 π / 3 ) c s c h ( 11.1 k f τ P ) , I 2 = 1 2 [ 1 + J 0 ( 2 π / 3 ) ] + 11.1 f τ P k = 1 k J 2 k ( 2 π / 3 ) c s c h ( 11.1 k f τ P ) cos ( 2 k π / 3 ) ,

Metrics