Abstract

Experiments have been performed to evaluate the use of parametric laser image upconversion in proustite to convert 10.6-μm illuminated objects into visible images. The experiments evaluated the key parameters, and the results were compared to the theory. A diffuse scatterplate was illuminated with radiation from a CO2 laser operating at 10.6 μm. The upconversion efficiency, angle of acceptance, tunability, bandwidth, and image resolution of the system were measured. The results were found to be in agreement with theory. The upconversion efficiency of the 1-cm-long mixer used was 6 × 10−6 for a local oscillator power density of 44 W/cm2. The half-power angle of acceptance for a 1-cm-long mixer was found to be 8°. Different frequency modes of the CO2 laser were identifiable by first tuning the laser and then following with the mixer. The tuning constant near 10.6 μm was measured to be 0.25 μm per degree of optic axis rotation. The acceptance bandwidth of the 1-cm-long proustite mixer was found to be 0.015 μm. In the imaging experiments, a diffuse reflecting, 100% contrast bar chart sequence was used to measure resolution, which, limited by transverse multimode local oscillator beam divergence, was found to be 20 mrad/cycle for a 25% depth of modulation in the upconverted signal. A source of internal parametric light was observed in the proustite mixer. Measurements of the light level, its temperature dependence, its phase matching dependence, a comparison with upconverted external blackbody radiation, and second-order parametric effects have been made. The light appears to be upconverted thermal radiation from within the proustite mixer.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Warner, J. Optoelectron. 3, 37 (1971).
  2. E. P. Morse, Nineteenth National Infrared Information Symposium, Monterey, California, June 1971; Proc. IRIS 16, 85 (1971).
  3. A. Yariv, Quantum Electronics (Wiley, New York, 1968).
  4. M. V. Hobden, Optoelectron. Lett. 1, 159 (1969).
  5. R. F. Lucy, J. Gunter, J. Opt. Soc. Am. 60, 738A (1970).
  6. A. H. Firester, Appl. Opt. 9, 2266 (1970).
    [CrossRef] [PubMed]
  7. R. A. Andrews, IEEE J. Quantum Electron. QE-6, 68 (1970).
    [CrossRef]
  8. W. Chiou, J. Appl. Phys. 42, 1985 (1971).
    [CrossRef]
  9. C. L. Tang, Phys. Rev. 182, 367 (1970).
    [CrossRef]

1971 (2)

J. Warner, J. Optoelectron. 3, 37 (1971).

W. Chiou, J. Appl. Phys. 42, 1985 (1971).
[CrossRef]

1970 (4)

C. L. Tang, Phys. Rev. 182, 367 (1970).
[CrossRef]

A. H. Firester, Appl. Opt. 9, 2266 (1970).
[CrossRef] [PubMed]

R. F. Lucy, J. Gunter, J. Opt. Soc. Am. 60, 738A (1970).

R. A. Andrews, IEEE J. Quantum Electron. QE-6, 68 (1970).
[CrossRef]

1969 (1)

M. V. Hobden, Optoelectron. Lett. 1, 159 (1969).

Andrews, R. A.

R. A. Andrews, IEEE J. Quantum Electron. QE-6, 68 (1970).
[CrossRef]

Chiou, W.

W. Chiou, J. Appl. Phys. 42, 1985 (1971).
[CrossRef]

Firester, A. H.

Gunter, J.

R. F. Lucy, J. Gunter, J. Opt. Soc. Am. 60, 738A (1970).

Hobden, M. V.

M. V. Hobden, Optoelectron. Lett. 1, 159 (1969).

Lucy, R. F.

R. F. Lucy, J. Gunter, J. Opt. Soc. Am. 60, 738A (1970).

Morse, E. P.

E. P. Morse, Nineteenth National Infrared Information Symposium, Monterey, California, June 1971; Proc. IRIS 16, 85 (1971).

Tang, C. L.

C. L. Tang, Phys. Rev. 182, 367 (1970).
[CrossRef]

Warner, J.

J. Warner, J. Optoelectron. 3, 37 (1971).

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1968).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

R. A. Andrews, IEEE J. Quantum Electron. QE-6, 68 (1970).
[CrossRef]

J. Appl. Phys. (1)

W. Chiou, J. Appl. Phys. 42, 1985 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

R. F. Lucy, J. Gunter, J. Opt. Soc. Am. 60, 738A (1970).

J. Optoelectron. (1)

J. Warner, J. Optoelectron. 3, 37 (1971).

Optoelectron. Lett. (1)

M. V. Hobden, Optoelectron. Lett. 1, 159 (1969).

Phys. Rev. (1)

C. L. Tang, Phys. Rev. 182, 367 (1970).
[CrossRef]

Other (2)

E. P. Morse, Nineteenth National Infrared Information Symposium, Monterey, California, June 1971; Proc. IRIS 16, 85 (1971).

A. Yariv, Quantum Electronics (Wiley, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Phase matching.

Fig. 2
Fig. 2

Minimization of Δk for 10.6-μm wavelength.

Fig. 3
Fig. 3

Dependence of field of view on wavelength for Δk minimization at 10.6-μm wavelength.

Fig. 4
Fig. 4

Upconversion experiment block diagram.

Fig. 5
Fig. 5

Azimuth angle of acceptance vs field of view (optimum phase matching).

Fig. 6
Fig. 6

Upconverted images showing wavelength dependence on field of view. (a) Unfiltered. (b) Visible bandpass 0.6507 ± 0.0003 μm, infrared bandpass 10.3 ± 0.08 μm. (c) Visible bandpass 0.6496 ± 0.0003 μm, infrared bandpass 10.09 ± 0.08 μm.

Fig. 7
Fig. 7

Upconverter tuning selectivity.

Fig. 8
Fig. 8

Reflected beam upconversion.

Fig. 9
Fig. 9

Upconverted image of diffusely reflected CO2 laser beam at different local oscillator beam divergences. (a) Image. (b) Corresponding density scan. Half-power width, top to bottom: 0.4 mrad, 1.0 mrad, 1.6 mrad, 2.8 mrad.

Fig. 10
Fig. 10

Upconverted sum signal vs blackbody temperature.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P s / P i r = ( π 2 d 2 Z o 3 P o l 2 c 2 / 2 n s n i r n o λ s A ) [ sin 2 ( Δ k l / 2 ) / ( Δ k l / 2 ) 2 ] ,
Δ k = ( k s k o k ir ) · z ˆ .
Δ k = k s [ k o cos ψ s + k i r cos ( ψ i r ψ s ) ] .
k s = { [ sin 2 ( θ o + ψ s ) / ( n s e k s ) 2 ] [ cos 2 ( θ o + ψ s ) / ( n s o k s ) 2 ] } 1 2 ,
k o = n o o k o ,
k i r = { [ sin ( θ o + ψ i r ) / ( n i r e k i r ) 2 ] + [ cos ( θ o + ψ i r ) / ( n i r o k i r ) 2 ] } 1 2 ,
k = 2 π / λ ,
( n o ) 2 = 9.220 + [ 0.4454 / ( λ 2 0.1264 ) ] [ 1.733 / ( 1000 λ 2 ) ] ,
( n e ) 2 = 7.007 + [ 0.3230 / ( λ 2 0.1192 ) ] [ 660 / ( 1000 λ 2 ) ] ,
ψ s = sin 1 [ k i r sin ψ i r / ( k i r 2 + k o 2 + 2 k i r k o cos ψ i r ] 1 2 .

Metrics