Abstract

Development of techniques for production of carefully controlled, low-loss optical waveguides in solid dielectric materials is essential to development of integrated optical circuits for signal processing in future optical communications systems. Ion implantation offers an attractive possibility because of the refractive index and film thickness control possible by this technique. To evaluate this possibility we have investigated some of the optical properties of ion-bombarded fused quartz. A variety of ions ranging from helium ions to bismuth ions has been used. We have concentrated on refractive index and optical loss variations (on those implants into which a beam could be launched) as effected by (1) ion species and dose, (2) surface preparation, (3) surface temperature during bombardment, and (4) postbombardment annealing. This paper does not attempt to give an inclusive account of all the results obtained but principally discusses the best results so far, which are those using lithium ions. For lithium ion bombardment we have observed approximately linear variation of refractive index at 6328 Å with dose n = n0 + 2.1 × 10−21C, where n0 is the prebombardment value (= 1.458 for fused quartz), and C is the ion concentration in ions/cm3 (C < 2.2 × 1019). The optical absorption decreases significantly with increase in substrate temperature during implantation, and losses less than 0.2 dB/cm have been achieved. The refractive index change appears to be primarily due to disorder produced by the incident particles rather than a chemical doping effect as evidenced by postbombardment annealing studies.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).
  2. J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
    [CrossRef]
  3. E. R. Schineller, R. Flam, D. Wilmot, J. Opt. Soc. Am. 58, 1171 (1968).
    [CrossRef]
  4. D. Grey, Ed., American Institute of Physics Handbook (McGraw-Hill, New York; 1963, pp. 8–20.
  5. R. M. Allen, Electron. Lett. 5, 111 (1969).
    [CrossRef]
  6. F. A. Abeles, in Advanced Optical Techniques (Wiley, New York, 1967), p. 143.
  7. O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).
  8. M. W. Thompson, in Proc. European Conference on Ion Implantation (P. Peregrinus Ltd., Stevenage, Herts, England, 1970), p. 109.
  9. A. R. Tynes, A. D. Pearson, D. L. Bisbee, J. Opt. Soc. Am. 61, 143 (1971).
    [CrossRef]

1971

1970

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

1969

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

R. M. Allen, Electron. Lett. 5, 111 (1969).
[CrossRef]

1968

Abeles, F. A.

F. A. Abeles, in Advanced Optical Techniques (Wiley, New York, 1967), p. 143.

Allen, R. M.

R. M. Allen, Electron. Lett. 5, 111 (1969).
[CrossRef]

Bisbee, D. L.

Flam, R.

Goell, J. E.

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).

Miller, S. E.

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

Pearson, A. D.

Schineller, E. R.

Standley, R. D.

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Thompson, M. W.

M. W. Thompson, in Proc. European Conference on Ion Implantation (P. Peregrinus Ltd., Stevenage, Herts, England, 1970), p. 109.

Tynes, A. R.

Wilmot, D.

Bell Syst. Tech. J.

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

Electron. Lett.

R. M. Allen, Electron. Lett. 5, 111 (1969).
[CrossRef]

J. Opt. Soc. Am.

Proc. IEEE

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Other

D. Grey, Ed., American Institute of Physics Handbook (McGraw-Hill, New York; 1963, pp. 8–20.

F. A. Abeles, in Advanced Optical Techniques (Wiley, New York, 1967), p. 143.

O. S. Heavens, Optical Properties of Thin Solid Films (Academic, New York, 1955).

M. W. Thompson, in Proc. European Conference on Ion Implantation (P. Peregrinus Ltd., Stevenage, Herts, England, 1970), p. 109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of ion implantation equipment.

Fig. 2
Fig. 2

Index of refraction of fused silica as a function of lithium ion implantation dose.

Fig. 3
Fig. 3

Partial annealing of the index of refraction change produced by 5 × 1014 lithium/cm2.

Tables (1)

Tables Icon

Table I Data on Ion-Bombarded Fused Quartz

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n = 1.458 + 2.1 × 10 21 C ,

Metrics