Abstract

The spectral radiant intensity (without imaging) is observed between 5000 Å and 1250 Å with gas pressures 1–8 atm in argon and 10–40 atm in helium. Tungsten and carbon electrodes with 1-mm gaps were used at breakdown voltages of 1.5–6.5 kV and C = 0.85 μF and L = 16.8 nHy. After reaching opacity and saturation within the visible range, the continuum radiation shifts toward shorter wavelengths with increasing voltage and gas pressure and reaches the intensity of the broad A+, A++, and He+ lines. Saturation of spectral intensity and self-reversal of lines is observed; intensities at 1250 Å may be higher by a factor of 25 than those at 5000 Å. Mean gas temperatures of approximately 60,000 K in argon and 100,000 K in helium are determined from the spectral lines of the electrode vapor in the case of relatively low gas pressures and foremost transparent channels by means of the Norm-temperature method. Channel pressures and particle densities are calculated from the channel expansion. Theoretical values of the continuum radiant intensity agree with the experimental results reasonably well.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Larenz, Z. Phys. 129, 327 (1951).
    [CrossRef]
  2. S. I. Braginskii, Sov. Phys. JETP 34, 1068 (1958).
  3. W. Finkelnburg, Th. Peters, in Handbuch der Physik (Springer, Berlin, 1957), Vol. 28.
  4. G. Glaser, Z. Naturforsch. 6a, 706 (1951).
  5. H. Fischer, J. Opt. Soc. Am. 47, 981 (1957).
    [CrossRef]
  6. H. Fischer, Conference on Extremely High Temperatures, Boston., 1958 (Wiley, New York, 1958), p. 11.
  7. M. P. Vanyukow, A. A. Mak, Sov. Phys. Usp. 66, 137 (1958).
    [CrossRef]
  8. M. P. Vanyukow, A. A. Mak, Proceedings, Fifth Interna-national Congress on High-Speed Photography, Washington, 1960.
  9. M. P. Vanyukow, A. A. Mak, A. I. Sadykowa, Sov. Phys. Dokl. 135, 1237 (1960).
  10. H. Fischer, L. Michel, Appl. Opt. 6, 935 (1967).
    [CrossRef] [PubMed]
  11. H. Fischer, W. Schwanzer, Appl. Opt. 8, 697 (1969).
    [CrossRef] [PubMed]
  12. G. S. Belkin, Sov. Phys. Tech. Phys. 13, 1258 (1969).
  13. K. Bunge, Spectrochim. Acta 10, 133 (1957).
    [CrossRef]
  14. C. M. Cundall, J. D. Craggs, Spectrochim. Acta 7, 149 (1955).
  15. F. S. Johnson, K. Watanabe, R. Tousey, J. Opt. Soc. Am. 41, 702 (1951).
    [CrossRef]
  16. K. Watanabe, E. L. Inn, J. Opt. Soc. Am. 43, 32 (1953).
    [CrossRef]
  17. G. K. Herb, W. I. van Sciver, Rev. Sci. Instrum. 36, 1650 (1965).
    [CrossRef]
  18. H. Späth, H. Krempl, Z. Angew. Phys. 12, 8 (1960).
  19. H. Krempl, Z. Phys. 167, 302 (1962).
    [CrossRef]
  20. J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).
  21. W. Gemmer, H. Gerke, H. Fischer, in preparation for publication.

1969 (3)

H. Fischer, W. Schwanzer, Appl. Opt. 8, 697 (1969).
[CrossRef] [PubMed]

G. S. Belkin, Sov. Phys. Tech. Phys. 13, 1258 (1969).

J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).

1967 (1)

1965 (1)

G. K. Herb, W. I. van Sciver, Rev. Sci. Instrum. 36, 1650 (1965).
[CrossRef]

1962 (1)

H. Krempl, Z. Phys. 167, 302 (1962).
[CrossRef]

1960 (2)

H. Späth, H. Krempl, Z. Angew. Phys. 12, 8 (1960).

M. P. Vanyukow, A. A. Mak, A. I. Sadykowa, Sov. Phys. Dokl. 135, 1237 (1960).

1958 (2)

M. P. Vanyukow, A. A. Mak, Sov. Phys. Usp. 66, 137 (1958).
[CrossRef]

S. I. Braginskii, Sov. Phys. JETP 34, 1068 (1958).

1957 (2)

H. Fischer, J. Opt. Soc. Am. 47, 981 (1957).
[CrossRef]

K. Bunge, Spectrochim. Acta 10, 133 (1957).
[CrossRef]

1955 (1)

C. M. Cundall, J. D. Craggs, Spectrochim. Acta 7, 149 (1955).

1953 (1)

1951 (3)

F. S. Johnson, K. Watanabe, R. Tousey, J. Opt. Soc. Am. 41, 702 (1951).
[CrossRef]

R. W. Larenz, Z. Phys. 129, 327 (1951).
[CrossRef]

G. Glaser, Z. Naturforsch. 6a, 706 (1951).

Belkin, G. S.

G. S. Belkin, Sov. Phys. Tech. Phys. 13, 1258 (1969).

Bortfeldt, J.

J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).

Braginskii, S. I.

S. I. Braginskii, Sov. Phys. JETP 34, 1068 (1958).

Bunge, K.

K. Bunge, Spectrochim. Acta 10, 133 (1957).
[CrossRef]

Craggs, J. D.

C. M. Cundall, J. D. Craggs, Spectrochim. Acta 7, 149 (1955).

Cundall, C. M.

C. M. Cundall, J. D. Craggs, Spectrochim. Acta 7, 149 (1955).

Finkelnburg, W.

W. Finkelnburg, Th. Peters, in Handbuch der Physik (Springer, Berlin, 1957), Vol. 28.

Fischer, H.

H. Fischer, W. Schwanzer, Appl. Opt. 8, 697 (1969).
[CrossRef] [PubMed]

H. Fischer, L. Michel, Appl. Opt. 6, 935 (1967).
[CrossRef] [PubMed]

H. Fischer, J. Opt. Soc. Am. 47, 981 (1957).
[CrossRef]

H. Fischer, Conference on Extremely High Temperatures, Boston., 1958 (Wiley, New York, 1958), p. 11.

W. Gemmer, H. Gerke, H. Fischer, in preparation for publication.

Gemmer, W.

W. Gemmer, H. Gerke, H. Fischer, in preparation for publication.

Gerke, H.

W. Gemmer, H. Gerke, H. Fischer, in preparation for publication.

Glaser, G.

G. Glaser, Z. Naturforsch. 6a, 706 (1951).

Herb, G. K.

G. K. Herb, W. I. van Sciver, Rev. Sci. Instrum. 36, 1650 (1965).
[CrossRef]

Inn, E. L.

Johnson, F. S.

Krempl, H.

H. Krempl, Z. Phys. 167, 302 (1962).
[CrossRef]

H. Späth, H. Krempl, Z. Angew. Phys. 12, 8 (1960).

Larenz, R. W.

R. W. Larenz, Z. Phys. 129, 327 (1951).
[CrossRef]

Mak, A. A.

M. P. Vanyukow, A. A. Mak, A. I. Sadykowa, Sov. Phys. Dokl. 135, 1237 (1960).

M. P. Vanyukow, A. A. Mak, Sov. Phys. Usp. 66, 137 (1958).
[CrossRef]

M. P. Vanyukow, A. A. Mak, Proceedings, Fifth Interna-national Congress on High-Speed Photography, Washington, 1960.

Meiners, D.

J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).

Michel, L.

Peters, Th.

W. Finkelnburg, Th. Peters, in Handbuch der Physik (Springer, Berlin, 1957), Vol. 28.

Sadykowa, A. I.

M. P. Vanyukow, A. A. Mak, A. I. Sadykowa, Sov. Phys. Dokl. 135, 1237 (1960).

Schwanzer, W.

Späth, H.

H. Späth, H. Krempl, Z. Angew. Phys. 12, 8 (1960).

Tousey, R.

van Sciver, W. I.

G. K. Herb, W. I. van Sciver, Rev. Sci. Instrum. 36, 1650 (1965).
[CrossRef]

Vanyukow, M. P.

M. P. Vanyukow, A. A. Mak, A. I. Sadykowa, Sov. Phys. Dokl. 135, 1237 (1960).

M. P. Vanyukow, A. A. Mak, Sov. Phys. Usp. 66, 137 (1958).
[CrossRef]

M. P. Vanyukow, A. A. Mak, Proceedings, Fifth Interna-national Congress on High-Speed Photography, Washington, 1960.

Watanabe, K.

Weber, W.

J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).

Wittig, L.

J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).

Appl. Opt. (2)

J. Opt. Soc. Am. (3)

Rev. Sci. Instrum. (1)

G. K. Herb, W. I. van Sciver, Rev. Sci. Instrum. 36, 1650 (1965).
[CrossRef]

Sov. Phys. Dokl. (1)

M. P. Vanyukow, A. A. Mak, A. I. Sadykowa, Sov. Phys. Dokl. 135, 1237 (1960).

Sov. Phys. JETP (1)

S. I. Braginskii, Sov. Phys. JETP 34, 1068 (1958).

Sov. Phys. Tech. Phys. (1)

G. S. Belkin, Sov. Phys. Tech. Phys. 13, 1258 (1969).

Sov. Phys. Usp. (1)

M. P. Vanyukow, A. A. Mak, Sov. Phys. Usp. 66, 137 (1958).
[CrossRef]

Spectrochim. Acta (2)

K. Bunge, Spectrochim. Acta 10, 133 (1957).
[CrossRef]

C. M. Cundall, J. D. Craggs, Spectrochim. Acta 7, 149 (1955).

Z. Angew. Phys. (2)

H. Späth, H. Krempl, Z. Angew. Phys. 12, 8 (1960).

J. Bortfeldt, D. Meiners, W. Weber, L. Wittig, Z. Angew. Phys. 27, 240 (1969).

Z. Naturforsch. (1)

G. Glaser, Z. Naturforsch. 6a, 706 (1951).

Z. Phys. (2)

R. W. Larenz, Z. Phys. 129, 327 (1951).
[CrossRef]

H. Krempl, Z. Phys. 167, 302 (1962).
[CrossRef]

Other (4)

W. Finkelnburg, Th. Peters, in Handbuch der Physik (Springer, Berlin, 1957), Vol. 28.

M. P. Vanyukow, A. A. Mak, Proceedings, Fifth Interna-national Congress on High-Speed Photography, Washington, 1960.

H. Fischer, Conference on Extremely High Temperatures, Boston., 1958 (Wiley, New York, 1958), p. 11.

W. Gemmer, H. Gerke, H. Fischer, in preparation for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement. 1, Coaxial capacitor; 2, electrodes and high pressure chamber; 3, lithium fluoride window; 4, vacuum spectrometer, Jarrell-Ash, 0.5-m Seya Namioka; 5, camera with film holder, Kodak SWR film, or multiplier RCA 7746 with sodium salicylate coated window; 6, breakdown voltage recorder; 7, scope.

Fig. 2
Fig. 2

Reflectance of the gratings (a),(b); transmittance of the lithium fluoride window (c).

Fig. 3
Fig. 3

Time-integrated spectrum in argon between 2600 Å and 1500 Å for different gas pressures.

Fig. 4
Fig. 4

Relative radiant intensities (5000–1250 Å) in argon during first current maximum (220 nsec after breakdown).

Fig. 5
Fig. 5

Time functions of the relative radiant intensities (without imaging) of the A++ 1670-Å line (dashed line), continuum at 1636 Å (solid line), and the A+ 1601-Å line (dotted line).

Fig. 6
Fig. 6

Times of carbon line intensity maxima in relation to the current. For u = 2.5 kV.

Fig. 7
Fig. 7

Temperature–time development in helium and argon.

Fig. 8
Fig. 8

Channel diameters, expansion velocities, and channel pressures as a function of time.

Fig. 9
Fig. 9

Time functions of mean particle densities in 10 atm helium at 2.5 kV.

Fig. 10
Fig. 10

Absorption coefficient αλ in argon as a function of temperature for three wavelengths.

Fig. 11
Fig. 11

Comparison of experimental (Fig. 4) (solid line) and theoretical (dashed line) radiant intensities at different pressures (voltages); the Planck curve (dotted line) of 70,000 K is added.

Tables (1)

Tables Icon

Table I Norm Temperatures Tx of Various Carbon Lines

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α λ = 0.16 · 10 30 · [ exp ( h c λ k T ) 1 ] · λ 3 n e ( k T ) 0.5 ( Z i + s ) 2 n i .
S λ = l · B λ, T · D / 2 + D / 2 { 1 exp [ 2 α λ ( D 2 / 4 x 2 ) 1 2 ] } d x .
q = 1 exp [ 2 α λ · ( D 2 / 4 x 2 ) 1 2 ] .

Metrics