Abstract

The constructional and operational aspects of a low voltage transversely excited gas transport CO2 laser are presented. This compact device incorporates a recirculating wind tunnel type geometry and possesses features of the gas dynamic, gas transport, and TEA lasers. The structure with an active length of 36 cm produced a cw power of approximately 200 W at an over-all system efficiency of 5% using a discharge potential of 1200 V.

© 1972 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low Voltage CO2 Laser Excitation

G. Sedgwick and H. Seguin
Appl. Opt. 9(12) 2737-2741 (1970)

Properties of a coaxial cw CO2 laser

Ken T.-K. Cheng and Lee W. Casperson
Appl. Opt. 18(13) 2130-2135 (1979)

Direct current-excited cw CO2 metal waveguide laser

Fahad S. Al-Mashaabi and Lee W. Casperson
Appl. Opt. 28(10) 1897-1903 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription