Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time of Flight Lidar Measurements as an Ocean Probe

Not Accessible

Your library or personal account may give you access

Abstract

Photons emitted by a narrow laser beam are followed through multiple scattering events in the ocean until registered by a detector at the source position. A realistic ocean model is used which takes account not only of molecular scattering (Rayleigh) and absorption, but also scattering and absorption by the hydrosols (Mie). The single scattering function for the hydrosols is calculated from Mie theory assuming a relative index of refraction of 1.15 and a size distribution with a modal radius of 3 μ. Targets with various surface albedos (A) are introduced at various distances from the source. The three-dimensional path of the photons is followed by a Monte Carlo technique. When A ≥ 0.02 the returned flux per unit photon path length from the targets is greater than the background from the laser beam for any target distance. The returned flux is plotted as a function of the photon path length. In practice the detection distance is limited by the lowest flux that can be detected and the background of natural light. Inhomogeneities in the optical properties of the ocean can also be measured in this way.

© 1972 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiative Transfer in an Atmosphere–Ocean System

Gilbert N. Plass and George W. Kattawar
Appl. Opt. 8(2) 455-466 (1969)

Effect of Aerosol Variation on Radiance in the Earth’s Atmosphere–Ocean System

Gilbert N. Plass and George W. Kattawar
Appl. Opt. 11(7) 1598-1604 (1972)

Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves

Gilbert N. Plass, George W. Kattawar, and John A. Guinn
Appl. Opt. 14(8) 1924-1936 (1975)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved