Abstract

The continued development of integrated optics is heavily dependent upon the availability of materials that are suitable for the construction of thin-film optical circuitry and devices. We report here an investigation of new films made by an rf discharge polymerization process of organic chemical monomers. We concentrate our discussion on films prepared from vinyltrimethylsilane and hexamethyldisiloxane. These films are smooth, tough, pinhole-free, transparent from 0.4 μm to 0.75 μm, and exhibit very low loss (<0.04 dB/cm) for light-wave propagation. More importantly, experiments demonstrate the possibility of controlling the refractive index of the films either by the mixing of the two monomers before deposition or by chemical treatment after the film is deposited. The use of the prism–film coupler for studying the refractive index of each material is discussed in detail.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).
  2. R. Shubert, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-16, 1048 (1968).
    [CrossRef]
  3. J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
    [CrossRef]
  4. P. K. Tien, Appl. Opt. 10, 0000 (1971).
    [CrossRef]
  5. M. J. Vasile, G. Smolinsky, will be published in J. Electrochem. Soc.
  6. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
    [CrossRef]
  7. P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
    [CrossRef]
  8. D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 10, 1037 (1971).
    [CrossRef] [PubMed]
  9. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).
  10. The time-sharing program was written by R. Ulrich, Bell Telephone Laboratories, Holmdel, New Jersey.

1971

P. K. Tien, Appl. Opt. 10, 0000 (1971).
[CrossRef]

P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
[CrossRef]

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 10, 1037 (1971).
[CrossRef] [PubMed]

1970

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

1969

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

1968

R. Shubert, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-16, 1048 (1968).
[CrossRef]

Cuthbert, J. D.

Goell, J. E.

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Harris, J. H.

R. Shubert, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-16, 1048 (1968).
[CrossRef]

Hensler, D. H.

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

Martin, R. J.

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 10, 1037 (1971).
[CrossRef] [PubMed]

P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
[CrossRef]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Miller, S. E.

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

Shubert, R.

R. Shubert, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-16, 1048 (1968).
[CrossRef]

Smolinsky, G.

M. J. Vasile, G. Smolinsky, will be published in J. Electrochem. Soc.

Standley, R. D.

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Tien, P. K.

P. K. Tien, Appl. Opt. 10, 0000 (1971).
[CrossRef]

P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
[CrossRef]

D. H. Hensler, J. D. Cuthbert, R. J. Martin, P. K. Tien, Appl. Opt. 10, 1037 (1971).
[CrossRef] [PubMed]

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

Vasile, M. J.

M. J. Vasile, G. Smolinsky, will be published in J. Electrochem. Soc.

Appl. Opt.

Appl. Phys. Lett.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
[CrossRef]

P. K. Tien, R. J. Martin, Appl. Phys. Lett. 18, 398 (1971).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969).

S. E. Miller, Bell Syst. Tech. J. 48, 2059 (1969).

IEEE Trans. Microwave Theory Tech.

R. Shubert, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-16, 1048 (1968).
[CrossRef]

Proc. IEEE

J. E. Goell, R. D. Standley, Proc. IEEE 58, 1504 (1970).
[CrossRef]

Other

M. J. Vasile, G. Smolinsky, will be published in J. Electrochem. Soc.

The time-sharing program was written by R. Ulrich, Bell Telephone Laboratories, Holmdel, New Jersey.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A method of coupling a laser beam into and out of a thin VTMS film. The prism at the right excites a light wave into the film, and a few centimeters away, the same light wave is coupled out of the film by the prism at the left. (b) Another method of coupling a laser beam into a VTMS film. The film forms a smooth tapered edge on the substrate. The laser beam enters into the film through this tapered edge.

Fig. 2
Fig. 2

Streaks of laser light excited in a VTMS film. The following lasers were used in the experiment: (a) 0.6328-μm helium–neon laser, (b) 0.5145-μm argon laser, (c), (d), and (e) 0.4880-μm argon laser.

Fig. 3
Fig. 3

Electron micrographs of (a), (b), (c) the VTMS films; (d), (e), (f) the HMDS films.

Fig. 4
Fig. 4

Light intensity (arbitrary units) detected at the output prism vs the distance between the input and output couplers.

Fig. 5
Fig. 5

Refractive indices of the films prepared by mixing VTMS and HMDS monomers before deposition.

Fig. 6
Fig. 6

Refractive indices of the VTMS films vs duration of heat treatment in O2.

Fig. 7
Fig. 7

Changes in thickness observed in the VTMS films vs duration of heat treatment in O2.

Fig. 8
Fig. 8

A schematic diagram of a prism–film coupler.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CH 2 = CH Si ( CH 3 ) 3 ( CH 3 ) 3 Si O Si ( CH 3 ) 3 ( 1 ) ( 2 )

Metrics