Abstract

This paper describes recent improvements in materials and techniques for storage of high efficiency phase holograms in electrooptic crystals. The storage performance of lithium niobate and barium sodium niobate was greatly enhanced by introducing transition metal impurities or by subjecting the undoped crystals to irradiation treatments. The latest materials combine good sensitivity with diffraction efficiencies that reach well over 50% for sample thickness of a few millimeters. In addition, the fixing techniques that were developed offer a simple means of achieving nondestructive readout for holographic information stored in these crystals.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Shankoff, Appl. Opt. 7, 2101 (1968); R. G. Brandes et al., Appl. Opt. 8, 2346 (1969).
    [Crossref] [PubMed]
  2. R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
    [Crossref]
  3. F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
    [Crossref]
  4. J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
    [Crossref]
  5. F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
    [Crossref]
  6. W. D. Johnston, J. Appl. Phys. 41, 3279 (1970).
    [Crossref]
  7. D. L. Staebler, J. J. Amodei, J. Appl. Phys.Feb. (1972).
  8. J. J. Amodei, RCA Rev. 32, 185 (1971).
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  10. J. J. Amodei, D. L. Staebler, A. W. Stephens, Appl. Phys. Lett. 18, 507 (1971).
    [Crossref]
  11. J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
    [Crossref]

1972 (1)

D. L. Staebler, J. J. Amodei, J. Appl. Phys.Feb. (1972).

1971 (4)

J. J. Amodei, RCA Rev. 32, 185 (1971).

J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[Crossref]

J. J. Amodei, D. L. Staebler, A. W. Stephens, Appl. Phys. Lett. 18, 507 (1971).
[Crossref]

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[Crossref]

1970 (1)

W. D. Johnston, J. Appl. Phys. 41, 3279 (1970).
[Crossref]

1969 (3)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
[Crossref]

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[Crossref]

1968 (2)

Amodei, J. J.

D. L. Staebler, J. J. Amodei, J. Appl. Phys.Feb. (1972).

J. J. Amodei, RCA Rev. 32, 185 (1971).

J. J. Amodei, D. L. Staebler, A. W. Stephens, Appl. Phys. Lett. 18, 507 (1971).
[Crossref]

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[Crossref]

J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[Crossref]

Chen, F. S.

F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
[Crossref]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[Crossref]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[Crossref]

Johnston, W. D.

W. D. Johnston, J. Appl. Phys. 41, 3279 (1970).
[Crossref]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[Crossref]

Mezrich, R. S.

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[Crossref]

Shankoff, T. A.

Staebler, D. L.

D. L. Staebler, J. J. Amodei, J. Appl. Phys.Feb. (1972).

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[Crossref]

J. J. Amodei, D. L. Staebler, A. W. Stephens, Appl. Phys. Lett. 18, 507 (1971).
[Crossref]

Stephens, A. W.

J. J. Amodei, D. L. Staebler, A. W. Stephens, Appl. Phys. Lett. 18, 507 (1971).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[Crossref]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, Appl. Phys. Lett. 13, 223 (1968).
[Crossref]

J. J. Amodei, Appl. Phys. Lett. 18, 22 (1971).
[Crossref]

J. J. Amodei, D. L. Staebler, A. W. Stephens, Appl. Phys. Lett. 18, 507 (1971).
[Crossref]

J. J. Amodei, D. L. Staebler, Appl. Phys. Lett. 18, 540 (1971).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys. (3)

F. S. Chen, J. Appl. Phys. 40, 3389 (1969).
[Crossref]

W. D. Johnston, J. Appl. Phys. 41, 3279 (1970).
[Crossref]

D. L. Staebler, J. J. Amodei, J. Appl. Phys.Feb. (1972).

RCA Rev. (1)

J. J. Amodei, RCA Rev. 32, 185 (1971).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic description of a plane wave interfering pattern.

Fig. 2
Fig. 2

Pictorial representation of hologram storage by diffusion of photogenerated free electrons.

Fig. 3
Fig. 3

Experimental setup for recording and reading out holograms in thick single crystals of electrooptic materials.

Fig. 4
Fig. 4

Absorption spectrum of a LiNbO3 sample (a) untreated and (b) after γ-ray irradiation.

Fig. 5
Fig. 5

The effect of the γ irradiation on the hologram storage in the same sample used for Fig. 4. Laser power 0.6 W/cm2.

Fig. 6
Fig. 6

Relative diffraction efficiency vs time during recording in a 0.2-cm thick sample of LiNbO3 doped with 0.1 mole % Fe and 0.05 mole % Mo. Laser power density 0.05 W/cm2.

Fig. 7
Fig. 7

Diffraction efficiency vs time during recording and readout in a 0.3-cm Ba2NaNb5O15 sample doped with 0.036 mole % Fe and 0.002 mole % Mo. Laser power 0.25 W/cm2.

Fig. 8
Fig. 8

Readout of (a) normal (optically erasable) hologram in a 0.3-cm sample of LiNbO3 and (b) a hologram fixed by heating the crystal after recording a normal hologram.

Fig. 9
Fig. 9

Photograph showing actual reconstruction of a fixed hologram in LiNbO3.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = I 0 ( 1 + m cos K x ) ,
E ( x ) = k T q m K sin K x 1 + m cos K x ,
E ( x ) - E 0 cos K x ,
η = sin 2 π n 1 d λ cos θ / 2 ,
N = ( 2 π E 0 ) / q l ,
N 10 16 cm - 3 .

Metrics