Abstract

A novel method of thermal imaging based on the up-conversion of infrared radiation in nonlinear optical crystals is analyzed. An equation is derived giving the temperature resolution in terms of the pump laser energy Ep. For a proustite–ruby system based on the 8–13-μ band, a temperature resolution of better than 1 °C is predicted when the number of resolvable spots is 100 × 100 and Ep = 10 J. Numerical results are also provided for eighteen possible systems having different combinations of pump laser (neodymium or ruby), infrared band (3–5 μ or 8–13 μ), nonlinear crystal (Ag3AsS3, AgGas2, ZnGeP2, or LiNbO3), and imaging photocathode [S-1,S-20, GaAs/(Cs,O), or In(As,P)/(Cs,O)].

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
    [CrossRef]
  2. J. Warner, Optoelectronics 3, 37 (1971).
  3. K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
    [CrossRef]
  4. J. Warner, Optoelectronics 1, 25 (1969).
  5. M. V. Hobden, Optoelectronics 1, 159 (1969).
  6. J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
    [CrossRef]
  7. R. Bechman, S. K. Kurtz, Landolt-Bornstein Physical Tables (New Series) (Springer-Verlag, Berlin, 1969), Vol. 2, p. 167.
  8. D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
    [CrossRef]
  9. G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 18, 301 (1971).
    [CrossRef]
  10. G. D. Boyd, H. Kasper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
    [CrossRef]
  11. J. P. van der Ziel, W. A. Nordland, Unpublished work quoted as Ref. 14 by our Ref. 10.

1971 (4)

J. Warner, Optoelectronics 3, 37 (1971).

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 18, 301 (1971).
[CrossRef]

G. D. Boyd, H. Kasper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

1969 (3)

J. Warner, Optoelectronics 1, 25 (1969).

M. V. Hobden, Optoelectronics 1, 159 (1969).

J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
[CrossRef]

1968 (1)

J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
[CrossRef]

1967 (1)

K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
[CrossRef]

Bechman, R.

R. Bechman, S. K. Kurtz, Landolt-Bornstein Physical Tables (New Series) (Springer-Verlag, Berlin, 1969), Vol. 2, p. 167.

Boyd, G. D.

G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 18, 301 (1971).
[CrossRef]

G. D. Boyd, H. Kasper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Buehler, E.

G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 18, 301 (1971).
[CrossRef]

Chemla, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
[CrossRef]

Davies, P. H.

K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
[CrossRef]

Hobden, M. V.

M. V. Hobden, Optoelectronics 1, 159 (1969).

K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
[CrossRef]

Hulme, K. F.

K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
[CrossRef]

Jones, O.

K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
[CrossRef]

Kasper, H.

G. D. Boyd, H. Kasper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Kupecek, P. J.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
[CrossRef]

Kurtz, S. K.

R. Bechman, S. K. Kurtz, Landolt-Bornstein Physical Tables (New Series) (Springer-Verlag, Berlin, 1969), Vol. 2, p. 167.

McFee, J. H.

G. D. Boyd, H. Kasper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Midwinter, J. E.

J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
[CrossRef]

J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
[CrossRef]

Nordland, W. A.

J. P. van der Ziel, W. A. Nordland, Unpublished work quoted as Ref. 14 by our Ref. 10.

Robertson, D. S.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
[CrossRef]

Smith, R. C.

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
[CrossRef]

Storz, F. G.

G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 18, 301 (1971).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, W. A. Nordland, Unpublished work quoted as Ref. 14 by our Ref. 10.

Warner, J.

J. Warner, Optoelectronics 3, 37 (1971).

J. Warner, Optoelectronics 1, 25 (1969).

Appl. Phys. Lett. (4)

J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968).
[CrossRef]

K. F. Hulme, O. Jones, P. H. Davies, M. V. Hobden, Appl. Phys. Lett. 10, 133 (1967).
[CrossRef]

J. E. Midwinter, Appl. Phys. Lett. 14, 29 (1969).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 18, 301 (1971).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. D. Boyd, H. Kasper, J. H. McFee, IEEE J. Quantum Electron. QE-7, 563 (1971).
[CrossRef]

Optics Commun. (1)

D. S. Chemla, P. J. Kupecek, D. S. Robertson, R. C. Smith, Optics Commun. 3, 29 (1971).
[CrossRef]

Optoelectronics (3)

J. Warner, Optoelectronics 1, 25 (1969).

M. V. Hobden, Optoelectronics 1, 159 (1969).

J. Warner, Optoelectronics 3, 37 (1971).

Other (2)

J. P. van der Ziel, W. A. Nordland, Unpublished work quoted as Ref. 14 by our Ref. 10.

R. Bechman, S. K. Kurtz, Landolt-Bornstein Physical Tables (New Series) (Springer-Verlag, Berlin, 1969), Vol. 2, p. 167.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of image up-converter system viewing a distant infrared scene.

Fig. 2
Fig. 2

Variations of phase-matched ir wavenumber νi with angle of inclination within the mixing crystal (ruby laser–proustite system) for three values of νi′—the wavenumber phase-matched on axis.

Fig. 3
Fig. 3

Temperature resolution of prosutite–ruby laser UC as a function of laser power, crystal size, etc.

Fig. 4
Fig. 4

Schematic diagram of the phase-matching situation within the frequency-mixing crystal.

Fig. 5
Fig. 5

Graphs illustrating the fractional variation of A and ψ for a ruby laser–proustite system with νi over the range from 1000 cm−1 to 1300 cm−1.

Fig. 6
Fig. 6

Illustrating the effect of spectral bandwidth on image resolution.

Tables (2)

Tables Icon

Table I Summary of Numerical Data for Proustite–Ruby Laser System

Tables Icon

Table II Thermal Imaging Up-Converter Performances

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

A R = μ 2 A c .
F i = ( N ν i / 2 h c ν i ) Δ ν i B · A R · π β i 2 .
F s = η c ( P p / A c ) L c 2 F i ,
p = α i / β i .
ϕ i = μ α i / n i ,
F s = ( π η c P p N ν i / 2 h c ) ( Δ ν i B / ν i ) ( n i ϕ i L c / p ) 2 .
Q = η D F s τ .
Δ N ν i / N ν i = k / Q .
Δ N ν i = ( d N ν i / d T ) Δ T .
Δ T 2 = ( 2 h c k 2 / π η c η D n i 2 ) · [ N ν i / ( d N ν i / d T ) 2 ] · ( ν i / ϕ i 2 Δ ν i B L c ) · ( p 2 / P p τ L c ) .
ν i / ϕ i 2 Δ ν i B L c = ( 1 / 2 π A ) · [ ν i / ( ν i - ν i ) ] ,
Δ T 2 = ( h c k 2 / π 2 A η c η D n i 2 ) · [ N ν i / ( d N ν i / d T ) 2 ] · [ ν i / ν i - ν i ) ] · ( p 2 / P p τ L c ) .
Δ T = [ 0.0381 p / ( P p τ L c ) 1 2 ]             K ( with P p in W , τ in sec , and L c in cm ) .
Q p = η D * ( P p / h c ν p ) · ( 1 / p 2 ) τ .
η D / η D * > ν i / π 2 A η c N ν i ( ν - ν ) ν p n i 2 L c .
η D / η D * > 8.2 × 10 10 .
P p > M h c ν i / π 2 N ν i η c η D η i 2 L c A ( ν i - ν i ) .
ϕ i - ϕ p = - ψ 0 ± { ψ 0 2 - A [ Δ k ( ν i , ϕ p ) - Δ k ( ν i , ϕ i ) ] } 1 2 ,
A = 2 k s 2 / { k s k p k i + k i 2 · [ ( d 2 k s / d θ 2 ) - k s 2 ] · ( d 2 k i / d θ 2 ) }
ψ 0 = A [ k i ( d k s / d θ ) - k s ( d k i / d θ ) ] / 2 k s .
ϕ i = ± { ψ 0 2 - A [ Δ k ( ν i , ϕ p ) - Δ k ( ν i , ϕ i ) ] } 1 2 .
ψ 0 2 = A Δ k ( ν i , ϕ p ) .
ϕ i 2 = A [ Δ k ( ν i , ϕ p ) - Δ k ( ν i , ϕ p ) ] A { d [ Δ k ( ν i , ϕ p ) ] / d ν i } ( ν i - ν i ) .
ν i - ν i = ϕ i 2 / A · { d [ Δ k ( ν i , ϕ p ) ] / d ν i } .
{ d [ Δ k ( ν i , ϕ i ) ] / d ν i } Δ ν i B = 2 π / L c .
d [ Δ k ( ν i , ϕ i ] ] / d ν i = d Δ k ( ν i , ϕ p ) / d ν i .
ν i / ϕ i 2 Δ ν i B L c = ν i / 2 π A ( ν i - ν i ) .
Δ k i = 1 2 ( d k i / d ν i ) Δ ν i B ,
Δ k i / Δ ϕ s = k s / ( ϕ i - ϕ s - Δ ϕ s ) ,
k p / ( ϕ i - ϕ s ) = k i / ( ϕ s - ϕ p ) .
Δ ϕ i / ( ϕ i - ϕ p ) = - ( 2 π k p / L c k s ) × ( 1 / k i ) ( d k i / d ν i ) ( Δ k ( ν i , ϕ i ) / ν i ] - 1 .
Δ ϕ i / ( ϕ i - ϕ p ) = 5.32 × 10 - 4 ( proustite - ruby laser ) .
Re [ E p ( x , y , 0 , t ) ] = Re ( E p exp { - [ ( x 2 + y 2 ) / w 0 2 ] } exp ( - i ω p t ) ) ,
E p ( x , y , z ) = 1 2 π - + - + d k p x d k p y ɛ p ( k p x , k p y ) exp i [ k p x x + ( k p y y + k p 2 - k p x 2 - k p y 2 ) 1 2 · z ] .
ɛ p ( k p x , k p y ) = ( E p w 0 2 / 2 ) · exp [ - ( k p x 2 + k p y 2 ) ( w 0 2 / 4 ) ] .
Re { E i exp [ i ( k i z - ω i t ) ] } .
Re { P s ( x , y , z ) exp [ - i ( ω i + ω p ) t ] }
P s ( x , y , z ) = d · E p ( x , y , z ) · E i exp ( i k i z ) = d E i E p w 0 2 4 π - - d k p x d k p y × exp [ - ( k p x 2 + k p y 2 ) w 0 2 / 4 ] exp ( i { k p x + k p y y + [ ( k p 2 - k p x 2 - k p y 2 ) 1 2 + k i ] z } ) .
E s ( x , y , z ) = Const . d E i E p w 0 2 4 π - - d k s x d k s y × exp [ - ( k s x 2 + k s y 2 ) w 0 2 / 4 ] exp [ i ( k s x x + k s y y ) + ( k s 2 - k s x 2 - k s y 2 ) 1 2 · z ] .

Metrics