Abstract

Computer Assisted Optical Surfacing (CAOS) is a modern system for optical fabrication. A computer is used to calculate the effects of moving a lap on an optical surface. A mathematical deconvolution technique is used to specify lap motions to correct a surface error. Application of the CAOS system to operation of an XY machine in the fabrication of off-axis segments of general aspherics is described.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Hopkins, J. Opt. Soc. Am. 61, 290 (1971).
    [CrossRef]
  2. J. B. Houston, C. J. Buccini, P. K. O’Neill, Appl. Opt. 6, 1237 (1967).
    [CrossRef] [PubMed]
  3. M. P. Rimmer, C. King, D. Fox, Appl. Opt., 11, 2790 (1972).
    [CrossRef] [PubMed]
  4. L. H. Meuser, J. Opt. Soc. Am. 61, 651(A) (1971).
  5. W. Rupp, J. Opt. Soc. Am. 61, 651(A) (1971).

1972 (1)

1971 (3)

R. E. Hopkins, J. Opt. Soc. Am. 61, 290 (1971).
[CrossRef]

L. H. Meuser, J. Opt. Soc. Am. 61, 651(A) (1971).

W. Rupp, J. Opt. Soc. Am. 61, 651(A) (1971).

1967 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

One-dimensional tool removal functions for a small tool moving across an annular zone on the work.

Fig. 2
Fig. 2

Material removal prediction resulting from convolution of tool removal functions of Fig. 1 with the dwell time distribution.

Fig. 3
Fig. 3

Deconvolution calculations for parabolizing. (a) Target remoyal shape and predicted final shape after deconvolution calculation. (b) Tool dwell radial distribution specified by deconvolution.

Fig. 4
Fig. 4

Results of CAOS/MOD parabolizing experiment (polishing).

Fig. 5
Fig. 5

Surface contour errors. (a) Schematic contour map. (b) Hexagonal matrix representation.

Fig. 6
Fig. 6

Deconvolution method for CAOS/XY. (a) Lap array. (b) Surface array during scan. (c) Residual surface array.

Fig. 7
Fig. 7

(a) Hit array for CAOS/XY. (b) Continuous lap center path on hit array.

Fig. 8
Fig. 8

Tool movement on the 110-cm capacity XY machine.

Fig. 9
Fig. 9

Spherical surface 60-cm diam, 300-cm radius figured by the CAOS/XY machine.

Fig. 10
Fig. 10

Correction of astigmatism with CAOS/XY. (a) Interferogram of astigmatic surface. (b) Astigmatic surface after 13-h correction.

Fig. 11
Fig. 11

Shape of off-axis aspheric segment. (a) Contour map of deviations from reference sphere. (b) Cross sections.

Fig. 12
Fig. 12

Interferogram of 100-wavelength off-axis aspheric surface after shaping grind.

Fig. 13
Fig. 13

Interferogram of 300-wavelength off-axis aspheric surface during figuring.

Fig. 14
Fig. 14

XY machine 250-cm capacity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ d h ( x , y ) / d t ] P ( x , y ) · v ( x , y ) ,
Δ h = 0 Δ t K ( abrasive , tool material , work material ) · P ( x , y , t ) · v ( x , y , t ) · d t , Δ h = K P s ,

Metrics