Abstract

Computer Assisted Optical Surfacing (CAOS) is a modern system for optical fabrication. A computer is used to calculate the effects of moving a lap on an optical surface. A mathematical deconvolution technique is used to specify lap motions to correct a surface error. Application of the CAOS system to operation of an XY machine in the fabrication of off-axis segments of general aspherics is described.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Hopkins, J. Opt. Soc. Am. 61, 290 (1971).
    [Crossref]
  2. J. B. Houston, C. J. Buccini, P. K. O’Neill, Appl. Opt. 6, 1237 (1967).
    [Crossref] [PubMed]
  3. M. P. Rimmer, C. King, D. Fox, Appl. Opt., 11, 2790 (1972).
    [Crossref] [PubMed]
  4. L. H. Meuser, J. Opt. Soc. Am. 61, 651(A) (1971).
  5. W. Rupp, J. Opt. Soc. Am. 61, 651(A) (1971).

1972 (1)

1971 (3)

L. H. Meuser, J. Opt. Soc. Am. 61, 651(A) (1971).

W. Rupp, J. Opt. Soc. Am. 61, 651(A) (1971).

R. E. Hopkins, J. Opt. Soc. Am. 61, 290 (1971).
[Crossref]

1967 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

One-dimensional tool removal functions for a small tool moving across an annular zone on the work.

Fig. 2
Fig. 2

Material removal prediction resulting from convolution of tool removal functions of Fig. 1 with the dwell time distribution.

Fig. 3
Fig. 3

Deconvolution calculations for parabolizing. (a) Target remoyal shape and predicted final shape after deconvolution calculation. (b) Tool dwell radial distribution specified by deconvolution.

Fig. 4
Fig. 4

Results of CAOS/MOD parabolizing experiment (polishing).

Fig. 5
Fig. 5

Surface contour errors. (a) Schematic contour map. (b) Hexagonal matrix representation.

Fig. 6
Fig. 6

Deconvolution method for CAOS/XY. (a) Lap array. (b) Surface array during scan. (c) Residual surface array.

Fig. 7
Fig. 7

(a) Hit array for CAOS/XY. (b) Continuous lap center path on hit array.

Fig. 8
Fig. 8

Tool movement on the 110-cm capacity XY machine.

Fig. 9
Fig. 9

Spherical surface 60-cm diam, 300-cm radius figured by the CAOS/XY machine.

Fig. 10
Fig. 10

Correction of astigmatism with CAOS/XY. (a) Interferogram of astigmatic surface. (b) Astigmatic surface after 13-h correction.

Fig. 11
Fig. 11

Shape of off-axis aspheric segment. (a) Contour map of deviations from reference sphere. (b) Cross sections.

Fig. 12
Fig. 12

Interferogram of 100-wavelength off-axis aspheric surface after shaping grind.

Fig. 13
Fig. 13

Interferogram of 300-wavelength off-axis aspheric surface during figuring.

Fig. 14
Fig. 14

XY machine 250-cm capacity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ d h ( x , y ) / d t ] P ( x , y ) · v ( x , y ) ,
Δ h = 0 Δ t K ( abrasive , tool material , work material ) · P ( x , y , t ) · v ( x , y , t ) · d t , Δ h = K P s ,

Metrics