Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
    [Crossref]
  2. A. E. Siegman, Proc. IEEE 53, 277 (1965).
    [Crossref]
  3. R. A. Chodzko, H. Mirels, F. Roehrs, “Application of Single Frequency Unstable Cavity to a cw HF Laser,” in preparation.

1965 (2)

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[Crossref]

A. E. Siegman, Proc. IEEE 53, 277 (1965).
[Crossref]

Chodzko, R. A.

R. A. Chodzko, H. Mirels, F. Roehrs, “Application of Single Frequency Unstable Cavity to a cw HF Laser,” in preparation.

Mirels, H.

R. A. Chodzko, H. Mirels, F. Roehrs, “Application of Single Frequency Unstable Cavity to a cw HF Laser,” in preparation.

Rigrod, W. W.

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[Crossref]

Roehrs, F.

R. A. Chodzko, H. Mirels, F. Roehrs, “Application of Single Frequency Unstable Cavity to a cw HF Laser,” in preparation.

Siegman, A. E.

A. E. Siegman, Proc. IEEE 53, 277 (1965).
[Crossref]

J. Appl. Phys. (1)

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[Crossref]

Proc. IEEE (1)

A. E. Siegman, Proc. IEEE 53, 277 (1965).
[Crossref]

Other (1)

R. A. Chodzko, H. Mirels, F. Roehrs, “Application of Single Frequency Unstable Cavity to a cw HF Laser,” in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Unstable cavity nomenclature

Fig. 2
Fig. 2

Variation of transmitted intensity Td with mirror transmissivity td at centerline for unstable cavity in which ρa < 0, |ρd| = ∞. Conditions correspond to configuration in Ref 3; σ = 2, L = 91.4 cm, l = 17.8 cm, g0 = 0.10 cm−1, Ra = 0.99, Rd = 0.99 − td: (a) m = 1; (b) m = 2.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

g / g 0 = ( 1 + I + + I - ) - 1 / m ,
d β + / d r = g β + ,             d β - / d r ¯ = g β - ,
β + β - = K             ( r a r r d ) ,
β + = β a + ,             β - = β a -             ( r a r r b ) ,
β + = β d + ,             β - = β d -             ( r c r r d ) .
β + / β b + = exp [ g 0 ( r - r b ) ] ,             β - / β c - = exp [ g 0 ( r ¯ - r ¯ c ) ] .
[ exp ( 2 g 0 l ) ] ( r a / r d ) σ ( r ¯ d / r ¯ a ) σ R a R d 1 ,
R d = ( r d / r ¯ d ) σ ( β c - / β c + ) ,
d β + / d ξ = g 0 l β + { 1 + ( β + / r σ ) + [ β - / ( r ¯ ) σ ] } - 1 / m ,
β - = ( r ¯ a / r a ) σ [ ( β a + ) 2 / R a ] ( 1 / β + ) ,
T d = I d + l d = ( β d + / r d σ ) t d .
ln β c + β b + + 1 r * σ ( β c + - β b + ) + 1 ( r ¯ * ) σ ( β b - - β c - ) = g 0 l ,
r * σ = ( β c + - β b + ) / [ β b + β c + ( d β + ) / r σ ] ,
( r ¯ * ) σ = ( β b - - β c - ) / [ β c - β b - ( d β - ) / ( r ¯ ) σ ] .
β d + = g 0 l + ln ( β a + / β d + ) ( 1 / r * σ ) [ 1 - ( β a + / β d + ) ] + R d / r ¯ * σ ( r ¯ d / r d ) σ [ ( β d + / β a + ) - 1 ]
β a - = [ ( β a + / β d + ) ( r ¯ a / r a ) σ ( 1 / R a ) ] β d + ,
β a + / β d + = { [ ( r ¯ d / r d ) ( r a / r ¯ a ) ] σ R d R a } 1 2 .
r * = ( r b + r c ) / 2 ,             r ¯ * = ( r ¯ b + r ¯ c ) / 2
g a = 1 - L / ρ a ,             g d = 1 - L / ρ d .
r ¯ a L = [ 1 - ( g a g d ) - 1 ] 1 2 - 1 + g d - 1 2 - g a - 1 - g d - 1 .
r ¯ d L = [ 1 - ( g a g d ) - 1 ] 1 2 - 1 + g d - 1 2 - g a - 1 - g d - 1 .
r a / L = [ 1 - ( ρ a / L ) ] 1 2 - 1 ,
r ¯ d / L = [ 1 - ( ρ a / L ) ] 1 2 .

Metrics