Abstract

Design considerations and performance are discussed for the previously reported continuous dye solution laser. Output power was 1 W untuned and up to 320 mW when tuned by a prism. Tuning range was 525–680 nm, obtained with the use of several dye solutions. Theoretical predictions. of output power as a function of input power and of dye concentration were in good agreement with measurements.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
    [CrossRef]
  2. G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).
  3. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  4. For simplicity at this point, the thin-lens equation has been used and the dye solution assumed to have a refractive index of 1.0.
  5. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1950), pp. 65–69.
  6. J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
    [CrossRef]
  7. R. Leite, S. Porto, T. Damon, Appl. Phys. Lett. 10, 100 (1967).
    [CrossRef]
  8. J. Whinnery, D. Miller, F. Dabby, IEEE J. Quantum Electron. QE-3, 382 (1967).
    [CrossRef]
  9. R. L. Carman, P. L. Kelly, Appl. Phys. Lett. 12, 241 (1968).
    [CrossRef]
  10. S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
    [CrossRef]
  11. F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
    [CrossRef]
  12. O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
    [CrossRef]
  13. W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
    [CrossRef]
  14. A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).
  15. H. Statz, C. L. Tang, J. Appl. Phys. 36, 1816 (1965).
    [CrossRef]
  16. T. Li, J. G. Skinner, J. Appl. Phys. 36, 2595 (1965).
    [CrossRef]
  17. J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
    [CrossRef]
  18. Ammonyx is a registered trademark of the Onyx Chemical Co., Jersey City, New Jersey.
  19. It was recently discovered that the polarization of the dye laser output was not completely linear, so that an unexpected reflection loss was occurring at the faces of the tuning prism. This phenomenon was traced to apparent birefringence in the dye cell and was eliminated by rotating the cell until the reflections at the prism faces disappeared. After this adjustment, the power output with and without the tuning prism was the same. Preliminary measurements showed that the peaks of the tuned-output curves increased about 20% compared with those shown in Fig. 14, as would be expected from comparison of the two measured curves of Fig. 11.
  20. S. Marakawa, G. Yamaguchi, C. Yamanaka, Japan. J. Appl. Phys. 7, 681 (1968).
    [CrossRef]
  21. F. C. Strome, J. P. Webb, Appl. Opt. 10, 1348 (1971).
    [CrossRef] [PubMed]
  22. B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
    [CrossRef]
  23. P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
    [CrossRef]
  24. D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).
  25. A. M. Bonch-Bruyevich, N. N. Kostin, V. A. Khodovoi, Opt. Spectrosc. 24, 547 (1968) [Opt. Spektrosk. 24, 1014 (1968)].
  26. S. E. Harris, S. T. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
    [CrossRef]
  27. W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
    [CrossRef]
  28. Note added in proof: Rhodamine B in water–Ammonyx solution was made to exhibit laser action in a redesigned system that provided increased dye flow velocity. Although the laser action occurred at longer wavelengths than with water–hexafluoroisopropanol, just as in the case of rhodamine 6G (Fig. 14), other rhodamine modifications appear to be more promising for continuous laser action at wavelengths longer than 640 nm.

1971

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
[CrossRef]

F. C. Strome, J. P. Webb, Appl. Opt. 10, 1348 (1971).
[CrossRef] [PubMed]

1970

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

1969

F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
[CrossRef]

S. E. Harris, S. T. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

1968

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).

A. M. Bonch-Bruyevich, N. N. Kostin, V. A. Khodovoi, Opt. Spectrosc. 24, 547 (1968) [Opt. Spektrosk. 24, 1014 (1968)].

R. L. Carman, P. L. Kelly, Appl. Phys. Lett. 12, 241 (1968).
[CrossRef]

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

S. Marakawa, G. Yamaguchi, C. Yamanaka, Japan. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

1967

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

R. Leite, S. Porto, T. Damon, Appl. Phys. Lett. 10, 100 (1967).
[CrossRef]

J. Whinnery, D. Miller, F. Dabby, IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

1965

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[CrossRef]

H. Statz, C. L. Tang, J. Appl. Phys. 36, 1816 (1965).
[CrossRef]

T. Li, J. G. Skinner, J. Appl. Phys. 36, 2595 (1965).
[CrossRef]

1961

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Akhmanov, S.

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

Bonch-Bruyevich, A. M.

A. M. Bonch-Bruyevich, N. N. Kostin, V. A. Khodovoi, Opt. Spectrosc. 24, 547 (1968) [Opt. Spektrosk. 24, 1014 (1968)].

Boyd, G. D.

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Boyko, R. W.

F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
[CrossRef]

Bradley, D. J.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).

Carman, R. L.

R. L. Carman, P. L. Kelly, Appl. Phys. Lett. 12, 241 (1968).
[CrossRef]

Dabby, F.

J. Whinnery, D. Miller, F. Dabby, IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

Dabby, F. W.

F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
[CrossRef]

Damon, T.

R. Leite, S. Porto, T. Damon, Appl. Phys. Lett. 10, 100 (1967).
[CrossRef]

Eberly, J. H.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
[CrossRef]

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

Fox, A. G.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Gale, G. M.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).

Gordon, J.

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Gordon, J. P.

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

Hammond, E. C.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

Harris, S. E.

S. E. Harris, S. T. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1950), pp. 65–69.

Kelly, P. L.

R. L. Carman, P. L. Kelly, Appl. Phys. Lett. 12, 241 (1968).
[CrossRef]

Khodovoi, V. A.

A. M. Bonch-Bruyevich, N. N. Kostin, V. A. Khodovoi, Opt. Spectrosc. 24, 547 (1968) [Opt. Spektrosk. 24, 1014 (1968)].

Khokhlov, R.

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

Kostin, N. N.

A. M. Bonch-Bruyevich, N. N. Kostin, V. A. Khodovoi, Opt. Spectrosc. 24, 547 (1968) [Opt. Spektrosk. 24, 1014 (1968)].

Krindach, D.

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

Lankard, J. R.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

Leite, R.

R. Leite, S. Porto, T. Damon, Appl. Phys. Lett. 10, 100 (1967).
[CrossRef]

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Li, T.

T. Li, J. G. Skinner, J. Appl. Phys. 36, 2595 (1965).
[CrossRef]

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

Marakawa, S.

S. Marakawa, G. Yamaguchi, C. Yamanaka, Japan. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

McColgin, W. C.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
[CrossRef]

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

McFarland, B. B.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Migulin, A.

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

Miller, D.

J. Whinnery, D. Miller, F. Dabby, IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

Moore, M.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).

Moore, R.

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Moruzzi, V. L.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

Nieh, S. T.

S. E. Harris, S. T. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Peterson, O. G.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
[CrossRef]

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

Porto, S.

R. Leite, S. Porto, T. Damon, Appl. Phys. Lett. 10, 100 (1967).
[CrossRef]

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[CrossRef]

Shank, C. V.

F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
[CrossRef]

Skinner, J. G.

T. Li, J. G. Skinner, J. Appl. Phys. 36, 2595 (1965).
[CrossRef]

Smith, P. D.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).

Snavely, B. B.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Sorokin, P. P.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

Statz, H.

H. Statz, C. L. Tang, J. Appl. Phys. 36, 1816 (1965).
[CrossRef]

Stockman, D. L.

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

Streifer, W.

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

Strome, F. C.

Sukhorukov, A.

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

Tang, C. L.

H. Statz, C. L. Tang, J. Appl. Phys. 36, 1816 (1965).
[CrossRef]

Tuccio, S. A.

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

Webb, J. P.

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
[CrossRef]

F. C. Strome, J. P. Webb, Appl. Opt. 10, 1348 (1971).
[CrossRef] [PubMed]

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

Whinnery, J.

J. Whinnery, D. Miller, F. Dabby, IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Whinnery, J. R.

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1950), pp. 65–69.

Winslow, D. K.

S. E. Harris, S. T. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Yamaguchi, G.

S. Marakawa, G. Yamaguchi, C. Yamanaka, Japan. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Yamanaka, C.

S. Marakawa, G. Yamaguchi, C. Yamanaka, Japan. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

S. E. Harris, S. T. Nieh, D. K. Winslow, Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

W. Streifer, J. R. Whinnery, Appl. Phys. Lett. 17, 335 (1970).
[CrossRef]

O. G. Peterson, S. A. Tuccio, B. B. Snavely, Appl. Phys. Lett. 17, 245 (1970).
[CrossRef]

R. L. Carman, P. L. Kelly, Appl. Phys. Lett. 12, 241 (1968).
[CrossRef]

R. Leite, S. Porto, T. Damon, Appl. Phys. Lett. 10, 100 (1967).
[CrossRef]

Bell Syst. Tech. J.

A. G. Fox, T. Li, Bell Syst. Tech. J. 40, 453 (1961).

G. D. Boyd, J. P. Gordon, Bell Syst. Tech. J. 40, 489 (1961).

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

IEEE J. Quantum Electron.

S. Akhmanov, D. Krindach, A. Migulin, A. Sukhorukov, R. Khokhlov, IEEE J. Quantum Electron. QE-4, 568 (1968).
[CrossRef]

F. W. Dabby, R. W. Boyko, C. V. Shank, J. R. Whinnery, IEEE J. Quantum Electron. QE-5, 516 (1969).
[CrossRef]

J. Whinnery, D. Miller, F. Dabby, IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

J. Appl. Phys.

J. Gordon, R. Leite, R. Moore, S. Porto, J. Whinnery, J. Appl. Phys. 36, 3 (1965).
[CrossRef]

H. Statz, C. L. Tang, J. Appl. Phys. 36, 1816 (1965).
[CrossRef]

T. Li, J. G. Skinner, J. Appl. Phys. 36, 2595 (1965).
[CrossRef]

O. G. Peterson, J. P. Webb, W. C. McColgin, J. H. Eberly, J. Appl. Phys. 42, 1917 (1971).
[CrossRef]

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[CrossRef]

J. Chem. Phys.

J. P. Webb, W. C. McColgin, O. G. Peterson, D. L. Stockman, J. H. Eberly, J. Chem. Phys. 53, 4227 (1970).
[CrossRef]

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

Japan. J. Appl. Phys.

S. Marakawa, G. Yamaguchi, C. Yamanaka, Japan. J. Appl. Phys. 7, 681 (1968).
[CrossRef]

Opt. Spectrosc.

A. M. Bonch-Bruyevich, N. N. Kostin, V. A. Khodovoi, Opt. Spectrosc. 24, 547 (1968) [Opt. Spektrosk. 24, 1014 (1968)].

Phys. Lett.

D. J. Bradley, G. M. Gale, M. Moore, P. D. Smith, Phys. Lett. 26A, 378 (1968).

Other

Note added in proof: Rhodamine B in water–Ammonyx solution was made to exhibit laser action in a redesigned system that provided increased dye flow velocity. Although the laser action occurred at longer wavelengths than with water–hexafluoroisopropanol, just as in the case of rhodamine 6G (Fig. 14), other rhodamine modifications appear to be more promising for continuous laser action at wavelengths longer than 640 nm.

Ammonyx is a registered trademark of the Onyx Chemical Co., Jersey City, New Jersey.

It was recently discovered that the polarization of the dye laser output was not completely linear, so that an unexpected reflection loss was occurring at the faces of the tuning prism. This phenomenon was traced to apparent birefringence in the dye cell and was eliminated by rotating the cell until the reflections at the prism faces disappeared. After this adjustment, the power output with and without the tuning prism was the same. Preliminary measurements showed that the peaks of the tuned-output curves increased about 20% compared with those shown in Fig. 14, as would be expected from comparison of the two measured curves of Fig. 11.

For simplicity at this point, the thin-lens equation has been used and the dye solution assumed to have a refractive index of 1.0.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1950), pp. 65–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Two-element, nearly hemispherical cavity. Rm and D are approximately equal.

Fig. 2
Fig. 2

Three-element, nearly hemispherical cavity with an internal lens. Flat mirror is approximately at the focal point of the lens.

Fig. 3
Fig. 3

Mode radius at flat mirror vs curved mirror position. Flat mirror at focal point of 5.3-mm lens.

Fig. 4
Fig. 4

Mode radius at flat mirror vs flat mirror distance from lens focal point.

Fig. 5
Fig. 5

Three-element, nearly hemispherical cavity with thick-lens parameters.

Fig. 6
Fig. 6

Relative laser output power and rms output fluctuations vs transit time of a dye molecule through the pump beam. Data obtained with a 3 × 10−4 M solution of rhodamine 6G in water plus 5% Ammonyx and a pump intensity of 1 MW/cm2 at 514.5 nm.

Fig. 7
Fig. 7

Schematic representation of the irradiance levels within a laser cavity arising from two counterpropagating beams.

Fig. 8
Fig. 8

Pump-beam and dye-laser-beam profiles within the dye solution.

Fig. 9
Fig. 9

Ray geometry in a Gaussian beam.

Fig. 10
Fig. 10

Output power vs concentration for a prism-tuned continuous dye laser. Rhodamine 6G in water plus 50 Ammonyx. Output wavelength, 593 nm. Input power, 1 W at 514.5 nm.

Fig. 11
Fig. 11

Output power vs input power for a continuous dye laser. Rhodamine 6G, 3 × 10−4M in water plus 5% Ammonyx. Input power at 514.5 nm.

Fig. 12
Fig. 12

Output power vs input power for a continuous dye laser with multiline argon-laser pumping. Rhodamine 6G, 2 × 10−4M in water plus 5% Ammonyx. No prism in cavity. Output at 593 nm.

Fig. 13
Fig. 13

Schematic representation of continuous-dye-laser cavity showing prism tuning arrangement.

Fig. 14
Fig. 14

Output power vs wavelength for a prism-tuned continuous dye laser. 1, rhodamine 6G, 2 × 10−4M in 3:1 water–hexafluoroisopropanol; 2, rhodamine 6G, 3 × 10−4M in water plus 5% Ammonyx; 3, rhodomine B, 3 × 10−4M in 3:1 water–hexafluoroisopropanol. Input power, 4 W at 514.5 nm. Output mirror transmittance, 3–6% over indicated tuning range.

Fig. 15
Fig. 15

Tunable, continuous dye laser, excited by beam from argon-ion laser at upper right. Glass prism in center is in resonant cavity formed by mirror just to the left of it and mirror behind the output lens of the dye cell. Mirror at left is semitransparent, and an auxiliary mirror at the extreme left redirects the beam forward for photographing or other use. The red beam visible in the picture was recorded by a second exposure with the dispersing system adjusted for resonance of red light.

Tables (1)

Tables Icon

Table I Parameters Used for Calculating Output Power

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

w 0 = ( λ / π ) 1 2 [ D ( R m - D ) ] 1 4 ,
w 0 / D = ( λ / π ) 2 [ ( R m - 2 D ) / 4 w 0 3 ] ,
Δ w 0 / w 0 = ( λ / π ) 2 [ ( R m - 2 D ) / 4 w 0 4 ] Δ D .
1 / q = 1 / R - i λ / π w 2 ,
q 0 = i π w 0 2 / λ .
1 / q 1 = - q 0 / f + ( 1 - d 1 / f ) ( 1 - d 2 / f ) q 0 + ( d 1 + d 2 - d 1 d 2 / f ) ,
( π w 0 2 λ ) 2 = R 1 ( f - d 1 ) [ d 2 ( f - d 1 ) + f d 1 ] - [ d 2 ( f - d 1 ) + f d 1 ] 2 ( f - d 2 + R 2 ) ( f - d 2 ) .
d 1 = f
d 2 = R 1 / 2 + f .
( w 0 ) st = ( 2 λ f 2 / π R m ) 1 2 .
d 1 = f - h 1
d 2 = R / 2 + f / n 1 - h 2 ,
( w 0 ) st = { 2 λ n 1 π R m [ ( f - h 1 ) ( f / n 1 - h 2 ) + f t / n 2 ] } 1 2 ,
d I e / d z = G I e ,
G = σ e n * - σ a n - σ T n T - A ,
n T = k S T τ T n * ,
n * + n + n T = N ,
G = γ n * - σ a N - A ,
γ = σ e + σ a + k S T τ T ( σ a - σ T ) .
d n * d t = - n * τ s - σ e n * h ν e I e + σ p n h ν p I p + σ a n h ν e I e = 0 ,
n * = N ( β p I p + β a I e ) 1 + β e I e + ( 1 + k S T τ T ) ( β p I p + β a I e ) ,
β e = σ e τ s / h ν e ,             β p = σ p τ s / h ν p ,             β a = σ a τ s / h ν e .
G = γ N ( β p I p + β a I e ) 1 + β e I e + ( 1 + k S T τ T ) ( β p I p + β a I e ) - σ a N - A .
[ d I e + ( r , z ) ] / d z = G ( r , z ) I e + ( r , z )
[ d I e - ( r , z ) ] / d z = - G ( r , z ) I e - ( r , z ) ,
I ( r , z ) = [ 2 P ( z ) / π w 2 ( z ) ] exp [ - 2 r 2 / w 2 ( z ) ] ,
w 2 ( z ) = w 0 2 [ 1 + ( λ z / π w 0 2 ) 2 ] .
P e ± ( z ) = 2 π 0 I e ± ( r , z ) r d r .
d P e ± / d z = ± 2 π 0 G ( r , z ) I e ± ( r , z ) r d r .
P e ± ( z + Δ z ) = P e ± ( z ) + [ d P e ± ( z ) / d z ] Δ z ,
r = u w p ( z ) ,
I p ( u , z ) = ( 2 P 0 / π w p 2 ) exp ( - 2 u 2 ) ,
d I p ( u , z ) = - 2 I p ( u , z ) ( d w p / w p ) .
d I p ( u , z ) = - I p ( u , z ) [ ( 2 d w p / w p ) + σ p n d s ] .
d s = ( d z 2 + d r 2 ) 1 2 = d z [ 1 + u 2 ( d w p / d z ) 2 ] 1 2 .
1 / τ = 1 / τ 0 + k Q N ,

Metrics