Abstract

Optics in the Kodak Research Laboratories has largely paralleled the development of this field of science throughout this country and the rest of the world in the last half century. In the earlier part of this period, the emphasis was on geometrical optics and especially problems related to lens design and analysis. Later, frequency-response methods became important and, with them, more emphasis on wave theory and diffraction theory. Some work was done at Kodak on radiative transfer and multiple-scatter problems because of their close relation to the optics of photographic emulsions.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Herzberger, Modern Geometrical Optics (Interscience, New York, 1958).
  2. D. Wilder, J. Opt. Soc. Am. 57, 1510 (1967).
    [CrossRef]
  3. E. Marchand, J. Opt. Soc. Am. 54, 915 (1964).
    [CrossRef]
  4. E. Marchand, J. Opt. Soc. Am. 55, 352 (1965).
    [CrossRef]
  5. E. Marchand, R. Phillips, Appl. Opt. 2, 359 (1963).
    [CrossRef]
  6. R. L. Lamberts, J. Opt. Soc. Am. 48, 490 (1958).
    [CrossRef]
  7. R. L. Lamberts, J. Opt. Soc. Am. 49, 475 (1959).
    [CrossRef]
  8. R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).
  9. R. Wolfe, E. Marchand, J. DePalma, J. Opt. Soc. Am. 58, 1245 (1968).
    [CrossRef]
  10. E. Marchand, E. Wolf, J. Opt. Soc. Am. 52, 761 (1962); E. Wolf, E. Marchand, J. Opt. Soc. Am. 54, 587 (1964).
    [CrossRef]
  11. E. Marchand, E. Wolf, J. Opt. Soc. Am. 56, 1712 (1966).
    [CrossRef]
  12. E. Marchand, E. Wolf, J. Opt. Soc. Am. 59, 79 (1969).
    [CrossRef]

1969 (1)

1968 (1)

1967 (1)

1966 (1)

1965 (1)

1964 (1)

1963 (1)

1962 (2)

1959 (1)

R. L. Lamberts, J. Opt. Soc. Am. 49, 475 (1959).
[CrossRef]

1958 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n = a + b ( λ 2 - λ 0 2 ) + c λ 2 - λ 0 2 + d ( λ 2 - λ 0 2 ) 2
I ( x ) = - i ( x , y ) d y .
ī ( ν 1 , ν 2 ) = - i ( x , y ) exp [ - 2 π i ( ν 1 x + ν 2 y ) ] d x d y ,
i ( x , y ) = - ī ( ν 1 , ν 2 ) exp [ 2 π i ( ν 1 x + ν 2 y ) ] d ν 1 d ν 2 .
O ¯ ( ν 1 , ν 2 ) = ī ( ν 1 , ν 2 ) O ¯ ( ν 1 , ν 2 ) ,
U ( P ) = U i ( P ) + Γ X W × d l .

Metrics