Abstract

Experimental measurements show that the phase transmittance characteristics of a photographic material, caused by relief images and variations of refractive index, can be fairly reproducible if processing is properly controlled. To manipulate these characteristics, particularly those of bleached materials, it would be desirable to have data for the phase image corresponding to the density–log exposure curve and the MTF curve of the density image obtained by conventional processing. A method is described for obtaining both curves from measurements of optical path variation of sinusoidally exposed images. Components from both the relief image and the variation of refractive index can be determined. It is shown that such data for a bleached photographic material can be used to produce an optical path variation having an arbitrary profile.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Lamberts, C. N. Kurtz, Appl. Opt. 10, 1342 (1971).
    [CrossRef] [PubMed]
  2. J. C. Patau, L. B. Lesem, P. M. Hirsch, J. A. Jordan, IBM J. Res. Dev. 14, 485 (1970).
    [CrossRef]
  3. C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).
  4. A. J. Chenoweth, Appl. Opt. 10, 913 (1971).
    [CrossRef] [PubMed]
  5. J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
    [CrossRef] [PubMed]
  6. G. L. Filmore, R. F. Tynan, J. Opt. Soc. Am. 61, 199 (1971).
    [CrossRef]
  7. L. H. Lin, J. Opt. Soc. Am. 61, 203 (1971).
    [CrossRef]
  8. H. Hannes, Optik 26, 363 (1967).
  9. H. M. Smith, J. Opt. Soc. Am. 58, 533 (1968).
    [CrossRef]
  10. R. L. Lamberts, J. Opt. Soc. Am. 60, 1389 (1970).
    [CrossRef]
  11. H. M. Smith, J. Opt. Soc. Am. 59, 1492 (1969).
    [CrossRef]
  12. H. Nassenstein, Optik 30, 44 (1969).
  13. M. Chang, N. George, Appl. Opt. 9, 713 (1970).
    [CrossRef] [PubMed]
  14. R. L. Lamberts, C. M. Straub, Photogr. Sci. Eng. 9, 331 (1965).
  15. R. L. Lamberts, Appl. Opt. 9, 1345 (1970).
    [CrossRef] [PubMed]
  16. J. H. Altman, Appl. Opt. 5, 1689 (1966).
    [CrossRef] [PubMed]
  17. Measurements performed through the courtesy of James Moore of the Methods Research and Technical Services Division of the Kodak Research Laboratories.

1971 (5)

1970 (4)

1969 (3)

1968 (1)

1967 (1)

H. Hannes, Optik 26, 363 (1967).

1966 (1)

1965 (1)

R. L. Lamberts, C. M. Straub, Photogr. Sci. Eng. 9, 331 (1965).

Altman, J. H.

Chang, M.

Chenoweth, A. J.

Filmore, G. L.

George, N.

Hannes, H.

H. Hannes, Optik 26, 363 (1967).

Hirsch, P. M.

J. C. Patau, L. B. Lesem, P. M. Hirsch, J. A. Jordan, IBM J. Res. Dev. 14, 485 (1970).
[CrossRef]

Jordan, J. A.

J. C. Patau, L. B. Lesem, P. M. Hirsch, J. A. Jordan, IBM J. Res. Dev. 14, 485 (1970).
[CrossRef]

Kurtz, C. N.

Lamberts, R. L.

Lesem, L. B.

J. C. Patau, L. B. Lesem, P. M. Hirsch, J. A. Jordan, IBM J. Res. Dev. 14, 485 (1970).
[CrossRef]

Lin, L. H.

Meier, R. W.

Nassenstein, H.

H. Nassenstein, Optik 30, 44 (1969).

Nelson, C. N.

C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).

Patau, J. C.

J. C. Patau, L. B. Lesem, P. M. Hirsch, J. A. Jordan, IBM J. Res. Dev. 14, 485 (1970).
[CrossRef]

Smith, H. M.

Straub, C. M.

R. L. Lamberts, C. M. Straub, Photogr. Sci. Eng. 9, 331 (1965).

Tynan, R. F.

Urbach, J. C.

Appl. Opt. (6)

IBM J. Res. Dev. (1)

J. C. Patau, L. B. Lesem, P. M. Hirsch, J. A. Jordan, IBM J. Res. Dev. 14, 485 (1970).
[CrossRef]

J. Opt. Soc. Am. (5)

Optik (2)

H. Nassenstein, Optik 30, 44 (1969).

H. Hannes, Optik 26, 363 (1967).

Photogr. Sci. Eng. (2)

C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).

R. L. Lamberts, C. M. Straub, Photogr. Sci. Eng. 9, 331 (1965).

Other (1)

Measurements performed through the courtesy of James Moore of the Methods Research and Technical Services Division of the Kodak Research Laboratories.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Shrinkage of gelatin in the formation of a relief image.

Fig. 2
Fig. 2

Diagram of method for exposing and measuring optical path variation. Variable area sinusoidal test object, TO, is imaged by cylindrical lens, CL, and objective lens, L, onto photographic plate, P, to form a sinusoidal exposure. The plate is then processed and scanned. The optical path variation, ΔS, is a peak-to-peak measurement, as shown.

Fig. 3
Fig. 3

OPV in wavelengths, plotted as a function of average exposure for exposures on bleached plates dried by various methods: (1) at normal room temperature, (2) with forced hot air, (3) under refrigeration at about 4°C, and (4) with isopropyl alcohol.

Fig. 4
Fig. 4

Refractive index of bleached plate plotted as a function of log relative exposure. Measurements were made by scratch test.

Fig. 5
Fig. 5

Emulsion thickness of bleached plate plotted as a function of log relative exposure.

Fig. 6
Fig. 6

OPV of bleached exposure patterns plotted as a function of log relative exposure. Curve 1, the total phase image; Curve 2, the relief-image component; and Curve 3, the index-image component.

Fig. 7
Fig. 7

Index-image operating curve, showing refractive index plotted vs log relative exposure. Points shown are those from Fig. 4.

Fig. 8
Fig. 8

Index-image operating curves determined from patterns with spatial frequencies shown on individual curves. The curves are displaced laterally from one another for comparison.

Fig. 9
Fig. 9

Comparison of index-image operating curve with density–log exposure data (open circles) measured for unbleached plate.

Fig. 10
Fig. 10

Comparison of index-image operating curve with values of refractive index calculated by Lorentz-Lorenz equation.

Fig. 11
Fig. 11

Operating curves for spatial frequency of 10 cycles/mm for index image (lower curve), relief image (middle curve), and total phase image (upper curve).

Fig. 12
Fig. 12

Relief-image operating curves for spatial frequencies indicated on the individual curves.

Fig. 13
Fig. 13

Frequency response curves for total phase image (upper curve), relief image (middle curve), and index image (lower curve).

Fig. 14
Fig. 14

Comparison of a scan across photographically produced lenticule (solid line) with the mathematical form the lenticule was designed to achieve (dashed line).

Tables (1)

Tables Icon

Table I Film Curl as a Function of Process

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( E ) = l = 1 r [ ( Δ S ) l / Δ log E ] δ log E ,
Δ s = ( n a - n i ) Δ d + d Δ n ,
= 1 + 3 f 1 [ ( 2 + 2 1 ) / ( 2 - 1 ) ] - f ,

Metrics