Abstract

A simple system for measuring the scattered flux from fine-grained photographic emulsions is described. the Wiener spectrum of sample emulsions is measured for samples varying in grain size, With this system ratio, development time, and transmittance. It is shown that the measured re-thickness, silver-to-gel what is to be expected on theoretical grounds and that the functional form of the sults agree well with scattered light is well described by an overlapping-circular-grain model of the emulsion.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Am. 58, 970 (1968).
    [CrossRef]
  2. K. Biedermann, Optik 28, 160 (1968).
  3. A. Kozma, Optica Acta 15, 527 (1968).
    [CrossRef]
  4. R. F. vanLigten, J. Opt. Soc. Am. 56, 1009 (1966).
    [CrossRef]
  5. F. Diamond, J. Opt. Soc. Am. 57, 503 (1967).
    [CrossRef]
  6. A. Kozma, J. S. Zelenka, J. Opt. Soc. Am. 60, 34 (1970).
    [CrossRef]
  7. R. Clark Jones, J. Opt. Soc. Am. 45, 799 (1955).
    [CrossRef]
  8. H. Thiry, J. Photogr. Sci. 11, 69 (1963).
  9. E. N. Leith, Photogr. Sci. Eng. 6, 75 (1962).
  10. C. W. Helstrom, J. Opt. Soc. Am. 56, 433 (1966).
    [CrossRef]
  11. C. B. Burckhardt, Appl. Opt. 6, 1359 (1967).
    [CrossRef] [PubMed]
  12. J. W. Goodman, J. Opt. Soc. Am. 57, 493 (1968).
    [CrossRef]
  13. A. Kozma, J. Opt. Soc. Am. 58, 463 (1968).
    [CrossRef]
  14. W. H. Lee, M. O. Greer, J. Opt. Soc. Am. 61, 402 (1971).
    [CrossRef]
  15. G. B. Brandt, Appl. Opt. 9, 1424 (1970).
    [CrossRef] [PubMed]
  16. K. Biedermann, Optik 31, 1 (1970).
  17. D. H. R. Vilkomerson, Appl. Opt. 9, 2080 (1970).
    [CrossRef] [PubMed]
  18. K. Biedermann, K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).
  19. Reconstruction ratio R is the ratio of the irradiance in the holographic image of a uniformly diffuse object to the irradiance of the image of the object itself. It is related to the diffraction efficiency η of the hologram through the beam-balance ratio K: R = K·η, where K is the ratio of reference-to-object-beam irradiance at the hologram.
  20. W. Hartel, Licht 10, 141 (1940).
  21. S. K. Salib, Kodak Research Laboratory, private communication.
  22. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), p. 113.
  23. B. Picinbono, Compt. Rend. 240, 2206 (1955).

1971 (1)

1970 (4)

1969 (1)

K. Biedermann, K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

1968 (5)

J. W. Goodman, J. Opt. Soc. Am. 57, 493 (1968).
[CrossRef]

A. Kozma, J. Opt. Soc. Am. 58, 463 (1968).
[CrossRef]

F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Am. 58, 970 (1968).
[CrossRef]

K. Biedermann, Optik 28, 160 (1968).

A. Kozma, Optica Acta 15, 527 (1968).
[CrossRef]

1967 (2)

1966 (2)

1963 (1)

H. Thiry, J. Photogr. Sci. 11, 69 (1963).

1962 (1)

E. N. Leith, Photogr. Sci. Eng. 6, 75 (1962).

1955 (2)

R. Clark Jones, J. Opt. Soc. Am. 45, 799 (1955).
[CrossRef]

B. Picinbono, Compt. Rend. 240, 2206 (1955).

1940 (1)

W. Hartel, Licht 10, 141 (1940).

Biedermann, K.

K. Biedermann, Optik 31, 1 (1970).

K. Biedermann, K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

K. Biedermann, Optik 28, 160 (1968).

Brandt, G. B.

Burckhardt, C. B.

Clark Jones, R.

Diamond, F.

Goodman, J. W.

Greer, M. O.

Hartel, W.

W. Hartel, Licht 10, 141 (1940).

Helstrom, C. W.

Kaspar, F. G.

Kozma, A.

A. Kozma, J. S. Zelenka, J. Opt. Soc. Am. 60, 34 (1970).
[CrossRef]

A. Kozma, Optica Acta 15, 527 (1968).
[CrossRef]

A. Kozma, J. Opt. Soc. Am. 58, 463 (1968).
[CrossRef]

Lamberts, R. L.

Lee, W. H.

Leith, E. N.

E. N. Leith, Photogr. Sci. Eng. 6, 75 (1962).

O’Neill, E. L.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), p. 113.

Picinbono, B.

B. Picinbono, Compt. Rend. 240, 2206 (1955).

Salib, S. K.

S. K. Salib, Kodak Research Laboratory, private communication.

Stetson, K. A.

K. Biedermann, K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

Thiry, H.

H. Thiry, J. Photogr. Sci. 11, 69 (1963).

vanLigten, R. F.

Vilkomerson, D. H. R.

Zelenka, J. S.

Appl. Opt. (3)

Compt. Rend. (1)

B. Picinbono, Compt. Rend. 240, 2206 (1955).

J. Opt. Soc. Am. (9)

J. Photogr. Sci. (1)

H. Thiry, J. Photogr. Sci. 11, 69 (1963).

Licht (1)

W. Hartel, Licht 10, 141 (1940).

Optica Acta (1)

A. Kozma, Optica Acta 15, 527 (1968).
[CrossRef]

Optik (2)

K. Biedermann, Optik 28, 160 (1968).

K. Biedermann, Optik 31, 1 (1970).

Photogr. Sci. Eng. (2)

K. Biedermann, K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

E. N. Leith, Photogr. Sci. Eng. 6, 75 (1962).

Other (3)

Reconstruction ratio R is the ratio of the irradiance in the holographic image of a uniformly diffuse object to the irradiance of the image of the object itself. It is related to the diffraction efficiency η of the hologram through the beam-balance ratio K: R = K·η, where K is the ratio of reference-to-object-beam irradiance at the hologram.

S. K. Salib, Kodak Research Laboratory, private communication.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), p. 113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the measuring apparatus.

Fig. 2
Fig. 2

Diagram defining the symbols used in the derivation of the bandwidth.

Fig. 3
Fig. 3

Scattering ratio S as a function of spatial frequency for Kodak spectroscopic plate, type 649-F, at several values of amplitude transmittance.

Fig. 4
Fig. 4

Scattering ratio S as a function of amplitude transmittance for Kodak spectroscopic plate, type 649-F, at a spatial frequency of 1000 cycles/mm.

Fig. 5
Fig. 5

Scattering ratio S as a function of spatial frequency for Kodak extended red recording film (Estar AH base) SO 382 and Kodak spectroscopic film and plate, type 649-F. All measurements are for an amplitude transmittance of 0.6.

Fig. 6
Fig. 6

Scattering ratio S as a function of spatial frequency for three emulsion-support materials.

Fig. 7
Fig. 7

Scattering ratio S as a function of spatial frequency for Kodak spectroscopic plate, type 649-F, developed in Kodak HRP developer, diluted 1:4 for 3 min, 5 min, 7 min, and 10 min at 21°C.

Fig. 8
Fig. 8

Scattering ratio S as a function of spatial frequency for emulsions of varying grain size. The amplitude transmittance of the samples was about 0.6.

Fig. 9
Fig. 9

Scattering ratio S as a function of spatial frequency for emulsions of various thicknesses. All samples had an amplitude transmittance of 0.6 and a grain size of 500 Å.

Fig. 10
Fig. 10

Scattering ratio S as a function of spatial frequency for emulsions coated with two different silver-to-gelatin ratios. Both samples had an amplitude transmittance of 0.6 and a grain size of 500 Å.

Fig. 11
Fig. 11

Scattering ratio S as a function of amplitude transmittance at several spatial frequencies for an emulsion on an acetate support.

Fig. 12
Fig. 12

Scattering ratio S as a function of spatial frequency for unexposed and fully processed emulsions at several thicknesses.

Fig. 13
Fig. 13

Relative scattering ratio S as a function of amplitude transmittance as calculated from a theory using an overlapping-circular-grain model for the emulsion. The indicated experimental data points are for Kodak spectroscopic plate, type 649-F, at 1000 cycles/mm.

Tables (1)

Tables Icon

Table I Scattering Angle at Given Spatial Frequency

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I i / σ = ( I i / I N ) [ ( 1 + 2 I i ) / I N ] - 1 2 .
ν h = sin θ / λ .
ν v = sin φ / λ .
Δ θ or Δ φ A / 2 f .
Δ ν v = [ sin ( Δ φ ) ] / λ A / 2 λ f ,
Δ ν h = [ cos θ sin ( Δ θ ) ] / λ A cos θ / 2 λ f .
B = π A 2 cos θ / 4 λ 2 f 2 .
Q k ( x ) = ( N F x + μ x ) k k exp [ - ( N F x + μ x ) ] ,
G ( T a ) = C 0 1 [ T a 2 - F ( ξ ) - T a 2 ] ξ d ξ ,
F ( ξ ) = ( 2 / π ) [ cos - 1 ξ - ξ ( 1 - ξ 2 ) 1 2 ] ,

Metrics