Abstract

The emission spectra of single particles of inorganic solids as a function of particle size have been recorded from 6 μ to 11.8 μ. For small optically thin particles, an emission maximum is produced in the reststrahlen region. The emission behavior is dominated by scattering and can be adequately described in terms of Mie absorption efficiency factors. As the particle size is increased, the emission band reverses its polarity, and the spectrum approaches that of a polished plate. The data provide source functions necessary for determining the emission behavior of particulate samples in which temperature gradients exist, such as on the lunar surface. The data are of particular interest for interpreting the spectral behavior of circumstellar silicate particles.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. P. Lyon, NASA Rept. CR-100 (1964).
  2. A. G. Emslie, Progress in Astronautics and Aeronautics, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18.
  3. J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
    [CrossRef]
  4. R. K. Vincent, G. R. Hunt, Appl. Opt. 7, 53 (1968).
    [CrossRef] [PubMed]
  5. J. E. Conel, J. Geophys. Res. 74, 1614 (1969).
    [CrossRef]
  6. R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glazer, Eds. (Academic, New York, 1964).
  7. J. E. Conel, Jet Propulsion Lab. Tech. Mem. 33–243 (1965).
  8. W. A. Hovis, W. R. Callahan, J. Opt. Soc. Am. 56, 639 (1966).
    [CrossRef]
  9. G. R. Hunt, R. K. Vincent, J. Geophys. Res. 73, 6039 (1968).
    [CrossRef]
  10. A. F. H. Goetz, Ph.D. Thesis, California Institute of Technology (1967), p. 20.
  11. L. M. Logan, G. R. Hunt, Science 169, 865 (1970).
    [CrossRef] [PubMed]
  12. L. M. Logan, G. R. Hunt, J. Geophys. Res. 75, 6539 (1970).
    [CrossRef]
  13. F. H. Murcray, D. G. Murcray, W. J. Williams, J. Geophys. Rev. 75, 2662 (1970).
    [CrossRef]
  14. H. O. McMahon, J. Opt. Soc. Am. 40, 376 (1950).
    [CrossRef]
  15. R. Gardon, J. Am. Ceram. Soc. 39, 278 (1956).
    [CrossRef]
  16. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  17. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959).
  19. R. E. Samuelson, Ph.D. Dissertation, Georgetown University, Washington, D.C. (1967).

1970 (3)

L. M. Logan, G. R. Hunt, Science 169, 865 (1970).
[CrossRef] [PubMed]

L. M. Logan, G. R. Hunt, J. Geophys. Res. 75, 6539 (1970).
[CrossRef]

F. H. Murcray, D. G. Murcray, W. J. Williams, J. Geophys. Rev. 75, 2662 (1970).
[CrossRef]

1969 (1)

J. E. Conel, J. Geophys. Res. 74, 1614 (1969).
[CrossRef]

1968 (2)

R. K. Vincent, G. R. Hunt, Appl. Opt. 7, 53 (1968).
[CrossRef] [PubMed]

G. R. Hunt, R. K. Vincent, J. Geophys. Res. 73, 6039 (1968).
[CrossRef]

1967 (1)

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
[CrossRef]

1966 (1)

1956 (1)

R. Gardon, J. Am. Ceram. Soc. 39, 278 (1956).
[CrossRef]

1950 (1)

Allen, R. V.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
[CrossRef]

Aronson, J. R.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959).

Callahan, W. R.

Conel, J. E.

J. E. Conel, J. Geophys. Res. 74, 1614 (1969).
[CrossRef]

J. E. Conel, Jet Propulsion Lab. Tech. Mem. 33–243 (1965).

Emslie, A. G.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
[CrossRef]

A. G. Emslie, Progress in Astronautics and Aeronautics, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18.

Gardon, R.

R. Gardon, J. Am. Ceram. Soc. 39, 278 (1956).
[CrossRef]

Goetz, A. F. H.

A. F. H. Goetz, Ph.D. Thesis, California Institute of Technology (1967), p. 20.

Hovis, W. A.

Hunt, G. R.

L. M. Logan, G. R. Hunt, Science 169, 865 (1970).
[CrossRef] [PubMed]

L. M. Logan, G. R. Hunt, J. Geophys. Res. 75, 6539 (1970).
[CrossRef]

R. K. Vincent, G. R. Hunt, Appl. Opt. 7, 53 (1968).
[CrossRef] [PubMed]

G. R. Hunt, R. K. Vincent, J. Geophys. Res. 73, 6039 (1968).
[CrossRef]

Logan, L. M.

L. M. Logan, G. R. Hunt, Science 169, 865 (1970).
[CrossRef] [PubMed]

L. M. Logan, G. R. Hunt, J. Geophys. Res. 75, 6539 (1970).
[CrossRef]

Lyon, R. J. P.

R. J. P. Lyon, NASA Rept. CR-100 (1964).

McLinden, H. G.

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
[CrossRef]

McMahon, H. O.

Murcray, D. G.

F. H. Murcray, D. G. Murcray, W. J. Williams, J. Geophys. Rev. 75, 2662 (1970).
[CrossRef]

Murcray, F. H.

F. H. Murcray, D. G. Murcray, W. J. Williams, J. Geophys. Rev. 75, 2662 (1970).
[CrossRef]

Samuelson, R. E.

R. E. Samuelson, Ph.D. Dissertation, Georgetown University, Washington, D.C. (1967).

Simon, I.

R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glazer, Eds. (Academic, New York, 1964).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Van Tassel, R. A.

R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glazer, Eds. (Academic, New York, 1964).

Vincent, R. K.

R. K. Vincent, G. R. Hunt, Appl. Opt. 7, 53 (1968).
[CrossRef] [PubMed]

G. R. Hunt, R. K. Vincent, J. Geophys. Res. 73, 6039 (1968).
[CrossRef]

Williams, W. J.

F. H. Murcray, D. G. Murcray, W. J. Williams, J. Geophys. Rev. 75, 2662 (1970).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959).

Appl. Opt. (1)

J. Am. Ceram. Soc. (1)

R. Gardon, J. Am. Ceram. Soc. 39, 278 (1956).
[CrossRef]

J. Geophys. Res. (4)

G. R. Hunt, R. K. Vincent, J. Geophys. Res. 73, 6039 (1968).
[CrossRef]

L. M. Logan, G. R. Hunt, J. Geophys. Res. 75, 6539 (1970).
[CrossRef]

J. E. Conel, J. Geophys. Res. 74, 1614 (1969).
[CrossRef]

J. R. Aronson, A. G. Emslie, R. V. Allen, H. G. McLinden, J. Geophys. Res. 72, 687 (1967).
[CrossRef]

J. Geophys. Rev. (1)

F. H. Murcray, D. G. Murcray, W. J. Williams, J. Geophys. Rev. 75, 2662 (1970).
[CrossRef]

J. Opt. Soc. Am. (2)

Science (1)

L. M. Logan, G. R. Hunt, Science 169, 865 (1970).
[CrossRef] [PubMed]

Other (9)

R. J. P. Lyon, NASA Rept. CR-100 (1964).

A. G. Emslie, Progress in Astronautics and Aeronautics, G. B. Heller, Ed. (Academic, New York, 1966), Vol. 18.

R. A. Van Tassel, I. Simon, in The Lunar Surface Layer, J. W. Salisbury, P. E. Glazer, Eds. (Academic, New York, 1964).

J. E. Conel, Jet Propulsion Lab. Tech. Mem. 33–243 (1965).

A. F. H. Goetz, Ph.D. Thesis, California Institute of Technology (1967), p. 20.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1959).

R. E. Samuelson, Ph.D. Dissertation, Georgetown University, Washington, D.C. (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Relative emittance spectra of hornblende. The size range is indicated for the three particulate samples, which were nominally one particle thick on a mirror.

Fig. 2
Fig. 2

Relative emittance spectra of anorthoclase. The size range is indicated for the three particulate samples, which were nominally one particle thick on a mirror.

Fig. 3
Fig. 3

Relative emittance spectra of quartz. The size range is indicated for the three particulate samples, which were nominally one particle thick on a mirror.

Fig. 4
Fig. 4

Relative emittance spectra of olivine. The size range is indicated for the three particulate samples, which were nominally one particle thick on a mirror.

Fig. 5
Fig. 5

Relative emittance spectra of quartz with narrower particle size ranges than in Fig. 3. The spectra that display a well defined reststrahlen minimum have been normalized at 8.5 μ.

Fig. 6
Fig. 6

Relative emittance spectra of olivine with narrower particle size ranges than in Fig. 4. These spectra have been normalized at 10.3 μ.

Fig. 7
Fig. 7

Relative emittance spectra of differing thicknesses of 0.5-μ particle size hornblende. The thick sample was optically thick (opaque) over the 6–11.8-μ wavelength range.

Fig. 8
Fig. 8

Relative emittance spectra of differing thicknesses of 0.5-μ particle size anortlioclase. The thick sample was optically thick (opaque) over the 6–11.8-μ wavelength range.

Fig. 9
Fig. 9

Theoretical single particle emission spectra derived from Mie absorption efficiency factors as calculated by Conel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E λ , t = E B B λ , t [ ( 1 - R λ , t ) ( 1 - T λ , t ) ] / ( 1 - R λ , t T λ , t ) ,
Q S = 2 α 2 n = 1 ( 2 n + 1 ) [ ( a n ) 2 + ( b n ) 2 ] , α E = 2 α 2 n = 1 ( 2 n + 1 ) R e ( a n + b n ) ,

Metrics