Abstract

The emission spectra of single particles of inorganic solids as a function of particle size have been recorded from 6 μ to 11.8 μ. For small optically thin particles, an emission maximum is produced in the reststrahlen region. The emission behavior is dominated by scattering and can be adequately described in terms of Mie absorption efficiency factors. As the particle size is increased, the emission band reverses its polarity, and the spectrum approaches that of a polished plate. The data provide source functions necessary for determining the emission behavior of particulate samples in which temperature gradients exist, such as on the lunar surface. The data are of particular interest for interpreting the spectral behavior of circumstellar silicate particles.

© 1972 Optical Society of America

Full Article  |  PDF Article
Related Articles
Spectral Reflectance and Emittance of Particulate Materials. 2: Application and Results

J. R. Aronson and A. G. Emslie
Appl. Opt. 12(11) 2573-2584 (1973)

Christiansen effect in IR spectra of soil-derived atmospheric dusts

Hugh R. Carlon
Appl. Opt. 18(21) 3610-3614 (1979)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription