Abstract

The pressure-modulated CO2 radiometer is a new kind of instrument capable of making temperature soundings in the 40–80-km region of the earth’s atmosphere. It is intended to be mounted on a polar-orbiting satellite, where it will give global coverage of the upper atmosphere in a region that is not well understood at present but that is, as rocket soundings show, clearly the seat of many interesting and vigorous phenomena. The new technique employs a cell containing carbon dioxide as a filter. The pressure and hence transmission of this cell is periodically modulated, resulting in the selection of thermal radiation from the strong lines in the spectrum of atmospheric CO2. This radiation originates at levels in the atmosphere where the pressure is low. The energy grasp of the device is large enough to give high sensitivity. Tests with a laboratory prototype and a balloon-borne instrument show that the device, if mounted outside the atmosphere, could detect changes of around 1 K in the temperature at 65-km altitude.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Kaplan, J. Opt. Soc. Am. 49, 1004 (1959).
    [CrossRef]
  2. D. Q. Wark, J. Geophys. Res. 66, 77 (1961).
    [CrossRef]
  3. D. Q. Wark, Appl. Opt. 9, 1761 (1970).
    [CrossRef] [PubMed]
  4. R. A. Hanel, B. Shlachman, F. D. Clark, C. H. Prakesh, J. B. Taylor, W. M. Wilson, L. Chaney, Appl. Opt. 9, 1767 (1970).
    [CrossRef] [PubMed]
  5. P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).
  6. J. T. Houghton, S. D. Smith, Proc. Roy. Soc. (London) A320, 23 (1970).
  7. P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
    [CrossRef] [PubMed]
  8. J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
    [CrossRef]
  9. A. Curtis, R. M. Goody, Proc. Roy. Soc. (London) A236, 193 (1956).
  10. J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 95, 1 (1969).
    [CrossRef]
  11. R. M. Goody, Atmospheric Radiation (Oxford U.P., Oxford, 1964).
  12. P. G. Abel, Ph.D. Thesis, University of Oxford (1966).
  13. P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

1971

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

1970

D. Q. Wark, Appl. Opt. 9, 1761 (1970).
[CrossRef] [PubMed]

R. A. Hanel, B. Shlachman, F. D. Clark, C. H. Prakesh, J. B. Taylor, W. M. Wilson, L. Chaney, Appl. Opt. 9, 1767 (1970).
[CrossRef] [PubMed]

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

J. T. Houghton, S. D. Smith, Proc. Roy. Soc. (London) A320, 23 (1970).

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

1969

J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 95, 1 (1969).
[CrossRef]

1961

D. Q. Wark, J. Geophys. Res. 66, 77 (1961).
[CrossRef]

1959

1956

A. Curtis, R. M. Goody, Proc. Roy. Soc. (London) A236, 193 (1956).

Abel, P. G.

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

P. G. Abel, Ph.D. Thesis, University of Oxford (1966).

Barnett, J. J.

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

Chaney, L.

Clark, F. D.

Curtis, A.

A. Curtis, R. M. Goody, Proc. Roy. Soc. (London) A236, 193 (1956).

Ellis, P. J.

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

Goody, R. M.

A. Curtis, R. M. Goody, Proc. Roy. Soc. (London) A236, 193 (1956).

R. M. Goody, Atmospheric Radiation (Oxford U.P., Oxford, 1964).

Hanel, R. A.

Harwood, R. S.

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

Houghton, J. T.

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

J. T. Houghton, S. D. Smith, Proc. Roy. Soc. (London) A320, 23 (1970).

J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 95, 1 (1969).
[CrossRef]

Kaplan, L. D.

Matley, J. B.

P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

Morgan, C. G.

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

Peckham, G.

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

Prakesh, C. H.

Rodgers, C. D.

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

Rodgers, D. C.

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

Shlachman, B.

Smith, S. D.

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

J. T. Houghton, S. D. Smith, Proc. Roy. Soc. (London) A320, 23 (1970).

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

Taylor, J. B.

Wark, D. Q.

D. Q. Wark, Appl. Opt. 9, 1761 (1970).
[CrossRef] [PubMed]

D. Q. Wark, J. Geophys. Res. 66, 77 (1961).
[CrossRef]

Williamson, E. J.

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

Wilson, W. M.

Appl. Opt.

J. Geophys. Res.

D. Q. Wark, J. Geophys. Res. 66, 77 (1961).
[CrossRef]

J. Opt. Soc. Am.

Nature

P. J. Ellis, G. Peckham, S. D. Smith, J. T. Houghton, C. G. Morgan, D. C. Rodgers, E. J. Williamson, Nature 228, 139 (1970).
[CrossRef] [PubMed]

J. J. Barnett, R. S. Harwood, J. T. Houghton, C. G. Morgan, C. D. Rodgers, E. J. Williamson, Nature 230, 47 (1971).
[CrossRef]

Proc. Roy. Soc. (London)

A. Curtis, R. M. Goody, Proc. Roy. Soc. (London) A236, 193 (1956).

P. G. Abel, P. J. Ellis, J. T. Houghton, G. Peckham, C. D. Rodgers, S. D. Smith, E. J. Williamson, Proc. Roy. Soc. (London) A320, 35 (1970).

J. T. Houghton, S. D. Smith, Proc. Roy. Soc. (London) A320, 23 (1970).

P. G. Abel, J. T. Houghton, J. B. Matley, E. J. Williamson, Proc. Roy. Soc. (London) A320, 57 (1970).

Quart. J. Roy. Meteorol. Soc.

J. T. Houghton, Quart. J. Roy. Meteorol. Soc. 95, 1 (1969).
[CrossRef]

Other

R. M. Goody, Atmospheric Radiation (Oxford U.P., Oxford, 1964).

P. G. Abel, Ph.D. Thesis, University of Oxford (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pressure modulator radiometer: experimental Configuration.

Fig. 2
Fig. 2

Weighting functions for two-channel satellite radiometer.

Fig. 3
Fig. 3

Illustrating the effective transmission of the radiometer. Curve a shows the transmission of the cell when the pressure is at its lowest for a typical strong line. Curve b shows the difference between a and another similar curve for the transmission of the cell at twice the pressure. Curve b is therefore the effective transmission of the pressure-modulator radiometer.

Fig. 4
Fig. 4

(a) Assembly of the pressure modulator with piston (p), springs (s), magnet (m), cylindrical tube of soft iron with pole pieces (d) surrounded by coils, piezoelectric pick-off (g), evacuating tube (f), cell (C), and space for electronics (E). (b) Construction of spider spring from beryllium copper.

Fig. 5
Fig. 5

Weighting functions for balloon radiometer as calculated (a), measured in laboratory without correction for atmospheric temperature (b), and after temperature correction (c).

Fig. 6
Fig. 6

Schematic of system of balloon radiosonde.

Fig. 7
Fig. 7

Results of balloon ascent plotted as crosses (with horizontal band showing probable error of each measurement) compared with calculated radiance profile (solid line).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

p c = p c o + Δ p c sin ω t .
F = B ( T ) [ d τ ( y ) / d y ] d y ,
K ( y ) = p * 2 / ( 1 + p * 2 ) / 2 3 ,
p * = [ a / 2 ( 1 + β ) l ] 1 2 ( p / p c o ) .
0 K ( y ) d y = 1.
p peak = [ 4 ( 1 + β ) l / a ] 1 2 p c o .
E w ( T ) = 2 1 2 A Ω τ 0 [ B ( T a ) ¯ - B ( T c ) ¯ ] Σ [ ( S i α i ) ( 1 + β ) l ] 1 2 Δ p c W
K [ y , T ( p ) ] = [ K m ( y , 293 K ) / K c ( y , 293 K ) ] K c [ y , T ( p ) ] ,
B ( T e ) = p = p b p 0 B [ T ( p ) ] d τ ( p 0 , p ) d y d y + B ( T g ) τ ( p 0 , p b ) ,
K ( y ) = d τ ( y ) d y = d d y 0 ( τ optics × τ cell × τ atm ) d ν ,
K ( y ) = τ 0 d d y 0 [ exp - ( cell k ν d u + atm k ν d u ) ] d ν ,
k v = i S i α i π k / p 0 ( ν - ν i ) 2 + α i 2 p 2 / p 0 2 ,
S i 2 π α i p / u p 0             ( strong absorption )
k v = i S i α i π p / p 0 ( ν - ν i ) 2 .
K ( y ) = τ 0 d d y 0 exp { - [ a p 2 2 p 0 + ( 1 + β ) l p c 2 p 0 ] × i S i α i π ( ν - ν i ) 2 } d ν ,
K ( y ) = A ( p 2 / p 0 ) [ ( a p 2 / 2 p 0 ) + ( 1 + β ) ( l p c 2 / p 0 ) ] - 1 2 i ( S i α i ) 1 2 ,
K w ( y ) = A Σ i ( S i α i ) 1 2 p 2 p 0 2 ( 1 + β ) l Δ p c p c o × [ a p 2 2 p 0 + ( 1 + β ) l p c o 2 p 0 ] - / 2 3 sin ω t .
0 K w ( y ) d y = 1
K ( y ) = p * 2 ( 1 + p * 2 ) / 2 3             with             p * = [ a 2 ( 1 + β ) l ] 1 2 p p c o ,
Δ W = W p c Δ p c = p c ( i ( S i α i u ) 1 2 ) Δ p c = i ( S i α i ) 1 2 p c [ ( 1 + β ) l p c 2 ] 1 2 Δ p c = 2 i ( S i α i ) 1 2 [ ( 1 + β ) l ] 1 2 Δ p c .
E w = 2 - 1 2 A Ω [ B ( T a ) - B ( T c ) ] i ( S i α i ) 1 2 [ ( 1 + β ) l ] 1 2 Δ p c .

Metrics