Abstract

Acoustic pulses at 85 Hz (4 m) directed vertically into the lower atmosphere have been tracked by a 36.8-MHz (8-m) pulse doppler radar. Signal-to-noise power ratios in excess of 10 dB were obtained to a height of 1.5 km in the initial tests under conditions of calm winds. This technique has the potential of providing temperature soundings of the lower atmosphere for pollution studies and short-range terminal weather forecasts.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Derr, C. G. Little, Appl. Opt. 9, 1976 (1970).
    [CrossRef] [PubMed]
  2. P. L. Smith, Remote Measurement of Wind Velocity by the Electromagnetic Acoustic Probe, 1 (Midwest Research Institute, Kansas City, 1961).
  3. R. W. Fetter, Remote Measurement of Wind Velocity by the Electromagnetic Acoustic Probe, 2 (Midwest Research Institute, Kansas City, 1961).
  4. R. W. Fetter, P. L. Smith, B. L. Jones, Investigation of Techniques for Remote Measurement of Atmospheric Wind Fields (Midwest Research Institute, Kansas City, 1962).
  5. C. H. Allen, S. D. Weiner, Bolt Beranek and Newman Report 1056 (AFCRL-63-596, 1963).
  6. A. Tonning, Appl. Sci. Res., Sec. B 6 (1957).
    [CrossRef]
  7. F. R. Brassfield, C. Stultz, E. T. Fago, An Electromagnetic Acoustic (EMAC) Probe for Remote Measurement of Wind Velocity (Midwest Research Institute, Kansas City, 1968).
  8. J. M. Marshall, Report SU-SEL-70-050 (AFCRL-70-0438), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).
  9. R. Nowak, E. M. North, M. S. Frankel, Report SU, SEL-70-021 (AFCRL-70-0365), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

1970 (1)

1957 (1)

A. Tonning, Appl. Sci. Res., Sec. B 6 (1957).
[CrossRef]

Allen, C. H.

C. H. Allen, S. D. Weiner, Bolt Beranek and Newman Report 1056 (AFCRL-63-596, 1963).

Brassfield, F. R.

F. R. Brassfield, C. Stultz, E. T. Fago, An Electromagnetic Acoustic (EMAC) Probe for Remote Measurement of Wind Velocity (Midwest Research Institute, Kansas City, 1968).

Derr, V. E.

Fago, E. T.

F. R. Brassfield, C. Stultz, E. T. Fago, An Electromagnetic Acoustic (EMAC) Probe for Remote Measurement of Wind Velocity (Midwest Research Institute, Kansas City, 1968).

Fetter, R. W.

R. W. Fetter, Remote Measurement of Wind Velocity by the Electromagnetic Acoustic Probe, 2 (Midwest Research Institute, Kansas City, 1961).

R. W. Fetter, P. L. Smith, B. L. Jones, Investigation of Techniques for Remote Measurement of Atmospheric Wind Fields (Midwest Research Institute, Kansas City, 1962).

Frankel, M. S.

R. Nowak, E. M. North, M. S. Frankel, Report SU, SEL-70-021 (AFCRL-70-0365), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

Jones, B. L.

R. W. Fetter, P. L. Smith, B. L. Jones, Investigation of Techniques for Remote Measurement of Atmospheric Wind Fields (Midwest Research Institute, Kansas City, 1962).

Little, C. G.

Marshall, J. M.

J. M. Marshall, Report SU-SEL-70-050 (AFCRL-70-0438), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

North, E. M.

R. Nowak, E. M. North, M. S. Frankel, Report SU, SEL-70-021 (AFCRL-70-0365), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

Nowak, R.

R. Nowak, E. M. North, M. S. Frankel, Report SU, SEL-70-021 (AFCRL-70-0365), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

Smith, P. L.

P. L. Smith, Remote Measurement of Wind Velocity by the Electromagnetic Acoustic Probe, 1 (Midwest Research Institute, Kansas City, 1961).

R. W. Fetter, P. L. Smith, B. L. Jones, Investigation of Techniques for Remote Measurement of Atmospheric Wind Fields (Midwest Research Institute, Kansas City, 1962).

Stultz, C.

F. R. Brassfield, C. Stultz, E. T. Fago, An Electromagnetic Acoustic (EMAC) Probe for Remote Measurement of Wind Velocity (Midwest Research Institute, Kansas City, 1968).

Tonning, A.

A. Tonning, Appl. Sci. Res., Sec. B 6 (1957).
[CrossRef]

Weiner, S. D.

C. H. Allen, S. D. Weiner, Bolt Beranek and Newman Report 1056 (AFCRL-63-596, 1963).

Appl. Opt. (1)

Appl. Sci. Res., Sec. B (1)

A. Tonning, Appl. Sci. Res., Sec. B 6 (1957).
[CrossRef]

Other (7)

F. R. Brassfield, C. Stultz, E. T. Fago, An Electromagnetic Acoustic (EMAC) Probe for Remote Measurement of Wind Velocity (Midwest Research Institute, Kansas City, 1968).

J. M. Marshall, Report SU-SEL-70-050 (AFCRL-70-0438), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

R. Nowak, E. M. North, M. S. Frankel, Report SU, SEL-70-021 (AFCRL-70-0365), Radioscience Laboratory, Stanford Electronics Laboratories (Stanford University, 1970).

P. L. Smith, Remote Measurement of Wind Velocity by the Electromagnetic Acoustic Probe, 1 (Midwest Research Institute, Kansas City, 1961).

R. W. Fetter, Remote Measurement of Wind Velocity by the Electromagnetic Acoustic Probe, 2 (Midwest Research Institute, Kansas City, 1961).

R. W. Fetter, P. L. Smith, B. L. Jones, Investigation of Techniques for Remote Measurement of Atmospheric Wind Fields (Midwest Research Institute, Kansas City, 1962).

C. H. Allen, S. D. Weiner, Bolt Beranek and Newman Report 1056 (AFCRL-63-596, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reflection coefficient vs wavelength ratio for acoustic pulse lengths of 10 and 100 wavelengths (λ e , radar wavelength; λ a , acoustic wavelength).

Fig. 2
Fig. 2

Calculated intensity pattern of the acoustic array.

Fig. 3
Fig. 3

Calculated signal-to-noise power ratio as a function of altitude for the experimental RASS terminal.

Fig. 4
Fig. 4

A typical sounding taken 20 July 1969 about 1 km in altitude. The acoustic frequency is 84.5 Hz.

Tables (1)

Tables Icon

Table I Experimental RASS Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P r = 1.38 × 10 - 16 P t P a g a n 2 R 2 { sin [ ( k a - 2 k ) ( n λ a / 2 ) ] ( k a - 2 k ) ( n λ a / 2 ) } 2 ,
T = ( f d λ e ) 2 4 q 2 ,

Metrics