Abstract

Three new results have been obtained with a recently developed camera of 10-psec framing time: (1) The effect of the finite speed of light in photographing relativistic objects is experimentally demonstrated, by photographing a dumbbell-like entity formed by two packets of light. In contrast to material objects, which, theory predicts, should appear rotated, the light dumbbell appears sheared. (2) Photographs of the mode-locked Nd: glass laser radiation show numerous subsidiary pulses accompanying the main ultrashort pulses in the train. The latter have durations ranging from 7 psec to 15 psec. (3) The technique of gated picture ranging, previously used with nanosecond pulses, is extended to the picosecond range where a resolution of 1 cm is demonstrated. Some potentially useful applications are proposed.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Hyzer, Engineering and Scientific High Speed Photography (Macmillan, New York, 1962).
  2. J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
    [CrossRef]
  3. A. J. Alcock, C. DeMichelis, M. C. Richardson, IEEE J. Quant. Electron. Qe-6, 622 (1970).
    [CrossRef]
  4. M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
    [CrossRef]
  5. M. A. Duguay, J. W. Hansen, Opt. Commun. 1, 254 (1969).
    [CrossRef]
  6. M. A. Duguay, J. W. Hansen, IEEE J. Quant. Electron. Qe-7, 37 (1971).
    [CrossRef]
  7. J. W. Hansen, M. A. Duguay, J. Soc. Motion Pict. Telev. Eng. 80, 73 (1971).
  8. J. Terrell, Phys. Rev. 16, 1041 (1959).
    [CrossRef]
  9. A. A. Malyutin, M. Ya. Shchelev, Pisma Zh. Eksp. Teor. Fiz. 9, 445 (1969) [JETP Lett. 9, 266 (1969)].
  10. J. Gildea, Appl. Opt. 9, 2230 (1970).
    [CrossRef] [PubMed]
  11. A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
    [CrossRef]
  12. M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quant. Electron. Qe-6, 725 (1970).
    [CrossRef]
  13. R. C. Miller, Phys. Lett. 26A, 177 (1968), and J. Comly, E. Garmine, Appl. Phys. Lett. 12, 7 (1968).
    [CrossRef]
  14. We are grateful to P. A. Fleury (BTL, Murray Hill) for suggesting milk particles. W. W. Wladimiroff (Stockholm Royal Inst. Technology) has also suggested Dupont’s Ludox HS, a 15-μ-diameter silica particle suspension (private communication).
  15. R. A. Fisher, P. L. Kelley, T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969).
    [CrossRef]
  16. For some materials n2B = Bλ, where B is the usual Kerr constant and λ the measuring wavelength (see Ref. 12, p. 738).
  17. When the gain-4 Nd:glass amplifier is used, the peak shutter transmission is five times higher and the contrast is correspondingly higher. Previously, a shutter extinction ratio as high as 104 had been measured.12
  18. D. J. Bradley, S. J. Caughey, G. H. C. New, Opt. Commun. 2, 41 (1970).
    [CrossRef]
  19. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
    [CrossRef]
  20. D. J. Bradley, B. Liddy, W. E. Sleat, Opt. Commun. 2, 391 (1971).
    [CrossRef]
  21. H. P. Weber, J. Appl. Phys. 39, 6041 (1968).
    [CrossRef]
  22. M. Ya. Shchelev (Moscow Lebedev Inst.) and D. H. Auston (BTL, Murray Hill); private communications.
  23. D. H. Auston, Appl. Phys. Lett. 18, 249 (1971).
    [CrossRef]
  24. D. Slepian, Bell Syst. Tech. J. 46, 2353 (1967); M. Schroeder, IEEE Spectrum66 (March1969).
    [CrossRef]
  25. E. I. Blount, J. R. Klauder, J. Appl. Phys. 40, 2874 (1969).
    [CrossRef]
  26. V. S. Letokhov (Inst. Spectroscopy, Akademgorodok, Moscow); private communication.
  27. O. R. Wood, R. L. Abrams, T. J. Bridges, Appl. Phys. Lett. 17, 376 (1970).
    [CrossRef]
  28. E. B. Treacy, Phys. Lett. 28A, 34 (1968).
  29. I. L. Fabelinskii, Molecular Light Scattering (Plenum Press, New York, 1968).
    [CrossRef]
  30. H. S. Gabelnick, H. L. Strauss, J. Chem. Phys. 49, 2334 (1968).
    [CrossRef]
  31. M. Paillette, Ann. Phys. (Paris) 4, 671 (1969).
  32. M. A. Duguay, J. W. Hansen, National Bureau of Standards Special Publication No. 341 on Damage in Laser Materials (Government Printing Office, Washington, D.C., 1970), pp. 45–49. In this paper we found the Schott glasses type Bk7 and LaSF7 to have an n2B 100 times and 35 times smaller, respectively, than in CS2. An experimental upper bound to the relaxation time was 5 psec.
  33. R. G. Brewer, C. H. Lee, Phys. Rev. Lett. 21, 267 (1968).
    [CrossRef]
  34. R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).
    [CrossRef]
  35. K. C. Jungling, O. L. Gaddy, IEEE J. Quant. Electron. Qe-7, 97 (1971).
    [CrossRef]
  36. To avoid problems with multiple reflections, the pellicles must reflect only a few percent of the light. A small reflectivity can be obtained by orienting them near the Brewster angle or by antireflection-coating them. Thin glass slides immersed in a near index-matching liquid can serve the same purpose.
  37. We are neglecting here the subpicosecond structure that the ultrashort pulses are known to possess (see Refs. 12, 18, 38) and that our 3-psec instrumental resolution blurs out. If we had subpicosecond resolution, a central spike would appear in the photographs.12,39
  38. R. C. Eckardt, C. H. Lee, Appl. Phys. Lett. 15, 425 (1969).
    [CrossRef]
  39. E. B. Treacy, IEEE J. Quant. Electron. QE-5454 (1969).
    [CrossRef]
  40. We realized after the fact that a 20-cm path length could have been achieved by simply folding the beam in the water cell by immersing two mirrors in the water.
  41. I. L. Fabelninskii, V. S. Starunov, Appl. Opt. 6, 1793 (1967); R. Cubeddu, R. Polloni, C. A. Sacchi, O. Svelto, Phys. Rev. A2, 1955 (1970).
    [CrossRef]
  42. V. S. Letokhov (Inst. Spectroscopy, Akademgorodok, Moscow); private communication.
  43. Our laser produced infrared pulses polarized in the horizontal plane. For optimum gating we had to set the axis of P1 at 45° to the vertical. In the future, a z-cut quartz plate could be used to rotate the plane of polarization of the infrared pulses at 45° to the horizontal and thus allow one to orient P1 vertically.
  44. M. J. Colles, Appl. Phys. Lett. 18, July (1971).
  45. We are grateful to J. A. Giordmaine (BTL, Murray Hill) for pointing this out.
  46. F. R. Arutyunian, V. A. Tumanian, Phys. Lett. 4, 176 (1963).
    [CrossRef]
  47. Reflecting or backscattering picosecond laser pulses from ultrarelativistic particles thus appears to be an intriguing means of producing exceedingly narrow x-ray or γ-ray pulses.
  48. The resulting photograph can be compared to that obtained by an amateur triggering his camera N times at closely spaced but irregular intervals when photographing a flock of N birds.

1971

D. J. Bradley, B. Liddy, W. E. Sleat, Opt. Commun. 2, 391 (1971).
[CrossRef]

D. H. Auston, Appl. Phys. Lett. 18, 249 (1971).
[CrossRef]

K. C. Jungling, O. L. Gaddy, IEEE J. Quant. Electron. Qe-7, 97 (1971).
[CrossRef]

M. A. Duguay, J. W. Hansen, IEEE J. Quant. Electron. Qe-7, 37 (1971).
[CrossRef]

J. W. Hansen, M. A. Duguay, J. Soc. Motion Pict. Telev. Eng. 80, 73 (1971).

M. J. Colles, Appl. Phys. Lett. 18, July (1971).

1970

J. Gildea, Appl. Opt. 9, 2230 (1970).
[CrossRef] [PubMed]

J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
[CrossRef]

A. J. Alcock, C. DeMichelis, M. C. Richardson, IEEE J. Quant. Electron. Qe-6, 622 (1970).
[CrossRef]

O. R. Wood, R. L. Abrams, T. J. Bridges, Appl. Phys. Lett. 17, 376 (1970).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).
[CrossRef]

D. J. Bradley, S. J. Caughey, G. H. C. New, Opt. Commun. 2, 41 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quant. Electron. Qe-6, 725 (1970).
[CrossRef]

1969

A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
[CrossRef]

R. A. Fisher, P. L. Kelley, T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969).
[CrossRef]

E. I. Blount, J. R. Klauder, J. Appl. Phys. 40, 2874 (1969).
[CrossRef]

M. Paillette, Ann. Phys. (Paris) 4, 671 (1969).

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

M. A. Duguay, J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

R. C. Eckardt, C. H. Lee, Appl. Phys. Lett. 15, 425 (1969).
[CrossRef]

E. B. Treacy, IEEE J. Quant. Electron. QE-5454 (1969).
[CrossRef]

A. A. Malyutin, M. Ya. Shchelev, Pisma Zh. Eksp. Teor. Fiz. 9, 445 (1969) [JETP Lett. 9, 266 (1969)].

1968

R. G. Brewer, C. H. Lee, Phys. Rev. Lett. 21, 267 (1968).
[CrossRef]

E. B. Treacy, Phys. Lett. 28A, 34 (1968).

H. S. Gabelnick, H. L. Strauss, J. Chem. Phys. 49, 2334 (1968).
[CrossRef]

R. C. Miller, Phys. Lett. 26A, 177 (1968), and J. Comly, E. Garmine, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

H. P. Weber, J. Appl. Phys. 39, 6041 (1968).
[CrossRef]

1967

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

D. Slepian, Bell Syst. Tech. J. 46, 2353 (1967); M. Schroeder, IEEE Spectrum66 (March1969).
[CrossRef]

I. L. Fabelninskii, V. S. Starunov, Appl. Opt. 6, 1793 (1967); R. Cubeddu, R. Polloni, C. A. Sacchi, O. Svelto, Phys. Rev. A2, 1955 (1970).
[CrossRef]

1963

F. R. Arutyunian, V. A. Tumanian, Phys. Lett. 4, 176 (1963).
[CrossRef]

1959

J. Terrell, Phys. Rev. 16, 1041 (1959).
[CrossRef]

Abrams, R. L.

O. R. Wood, R. L. Abrams, T. J. Bridges, Appl. Phys. Lett. 17, 376 (1970).
[CrossRef]

Alcock, A. J.

A. J. Alcock, C. DeMichelis, M. C. Richardson, IEEE J. Quant. Electron. Qe-6, 622 (1970).
[CrossRef]

Alfano, R. R.

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).
[CrossRef]

Arutyunian, F. R.

F. R. Arutyunian, V. A. Tumanian, Phys. Lett. 4, 176 (1963).
[CrossRef]

Auston, D. H.

D. H. Auston, Appl. Phys. Lett. 18, 249 (1971).
[CrossRef]

Blount, E. I.

E. I. Blount, J. R. Klauder, J. Appl. Phys. 40, 2874 (1969).
[CrossRef]

Bradley, D. J.

D. J. Bradley, B. Liddy, W. E. Sleat, Opt. Commun. 2, 391 (1971).
[CrossRef]

D. J. Bradley, S. J. Caughey, G. H. C. New, Opt. Commun. 2, 41 (1970).
[CrossRef]

Brewer, R. G.

R. G. Brewer, C. H. Lee, Phys. Rev. Lett. 21, 267 (1968).
[CrossRef]

Bridges, T. J.

O. R. Wood, R. L. Abrams, T. J. Bridges, Appl. Phys. Lett. 17, 376 (1970).
[CrossRef]

Brienza, M. J.

A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
[CrossRef]

Caughey, S. J.

D. J. Bradley, S. J. Caughey, G. H. C. New, Opt. Commun. 2, 41 (1970).
[CrossRef]

Colles, M. J.

M. J. Colles, Appl. Phys. Lett. 18, July (1971).

DeMaria, A. J.

A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
[CrossRef]

DeMichelis, C.

A. J. Alcock, C. DeMichelis, M. C. Richardson, IEEE J. Quant. Electron. Qe-6, 622 (1970).
[CrossRef]

Duguay, M. A.

M. A. Duguay, J. W. Hansen, IEEE J. Quant. Electron. Qe-7, 37 (1971).
[CrossRef]

J. W. Hansen, M. A. Duguay, J. Soc. Motion Pict. Telev. Eng. 80, 73 (1971).

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quant. Electron. Qe-6, 725 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

M. A. Duguay, J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

M. A. Duguay, J. W. Hansen, National Bureau of Standards Special Publication No. 341 on Damage in Laser Materials (Government Printing Office, Washington, D.C., 1970), pp. 45–49. In this paper we found the Schott glasses type Bk7 and LaSF7 to have an n2B 100 times and 35 times smaller, respectively, than in CS2. An experimental upper bound to the relaxation time was 5 psec.

Eckardt, R. C.

R. C. Eckardt, C. H. Lee, Appl. Phys. Lett. 15, 425 (1969).
[CrossRef]

Fabelinskii, I. L.

I. L. Fabelinskii, Molecular Light Scattering (Plenum Press, New York, 1968).
[CrossRef]

Fabelninskii, I. L.

Fisher, R. A.

R. A. Fisher, P. L. Kelley, T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969).
[CrossRef]

Fleury, P. A.

We are grateful to P. A. Fleury (BTL, Murray Hill) for suggesting milk particles. W. W. Wladimiroff (Stockholm Royal Inst. Technology) has also suggested Dupont’s Ludox HS, a 15-μ-diameter silica particle suspension (private communication).

Gabelnick, H. S.

H. S. Gabelnick, H. L. Strauss, J. Chem. Phys. 49, 2334 (1968).
[CrossRef]

Gaddy, O. L.

K. C. Jungling, O. L. Gaddy, IEEE J. Quant. Electron. Qe-7, 97 (1971).
[CrossRef]

Gildea, J.

Giordmaine, J. A.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Glenn, W. H.

A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
[CrossRef]

Gustafson, T. K.

R. A. Fisher, P. L. Kelley, T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969).
[CrossRef]

Haisma, J.

J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
[CrossRef]

Hansen, J. W.

J. W. Hansen, M. A. Duguay, J. Soc. Motion Pict. Telev. Eng. 80, 73 (1971).

M. A. Duguay, J. W. Hansen, IEEE J. Quant. Electron. Qe-7, 37 (1971).
[CrossRef]

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quant. Electron. Qe-6, 725 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

M. A. Duguay, J. W. Hansen, National Bureau of Standards Special Publication No. 341 on Damage in Laser Materials (Government Printing Office, Washington, D.C., 1970), pp. 45–49. In this paper we found the Schott glasses type Bk7 and LaSF7 to have an n2B 100 times and 35 times smaller, respectively, than in CS2. An experimental upper bound to the relaxation time was 5 psec.

Hazan, J. P.

J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
[CrossRef]

Hyzer, W. G.

W. G. Hyzer, Engineering and Scientific High Speed Photography (Macmillan, New York, 1962).

Jungling, K. C.

K. C. Jungling, O. L. Gaddy, IEEE J. Quant. Electron. Qe-7, 97 (1971).
[CrossRef]

Kelley, P. L.

R. A. Fisher, P. L. Kelley, T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969).
[CrossRef]

Klauder, J. R.

E. I. Blount, J. R. Klauder, J. Appl. Phys. 40, 2874 (1969).
[CrossRef]

Lee, C. H.

R. C. Eckardt, C. H. Lee, Appl. Phys. Lett. 15, 425 (1969).
[CrossRef]

R. G. Brewer, C. H. Lee, Phys. Rev. Lett. 21, 267 (1968).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov (Inst. Spectroscopy, Akademgorodok, Moscow); private communication.

V. S. Letokhov (Inst. Spectroscopy, Akademgorodok, Moscow); private communication.

Liddy, B.

D. J. Bradley, B. Liddy, W. E. Sleat, Opt. Commun. 2, 391 (1971).
[CrossRef]

Mack, M. E.

A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
[CrossRef]

Malyutin, A. A.

A. A. Malyutin, M. Ya. Shchelev, Pisma Zh. Eksp. Teor. Fiz. 9, 445 (1969) [JETP Lett. 9, 266 (1969)].

Marie, G.

J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
[CrossRef]

Miller, R. C.

R. C. Miller, Phys. Lett. 26A, 177 (1968), and J. Comly, E. Garmine, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

New, G. H. C.

D. J. Bradley, S. J. Caughey, G. H. C. New, Opt. Commun. 2, 41 (1970).
[CrossRef]

Nussli, J.

J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
[CrossRef]

Paillette, M.

M. Paillette, Ann. Phys. (Paris) 4, 671 (1969).

Rentzepis, P. M.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Richardson, M. C.

A. J. Alcock, C. DeMichelis, M. C. Richardson, IEEE J. Quant. Electron. Qe-6, 622 (1970).
[CrossRef]

Shapiro, S. L.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quant. Electron. Qe-6, 725 (1970).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).
[CrossRef]

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Shchelev, M. Ya.

A. A. Malyutin, M. Ya. Shchelev, Pisma Zh. Eksp. Teor. Fiz. 9, 445 (1969) [JETP Lett. 9, 266 (1969)].

M. Ya. Shchelev (Moscow Lebedev Inst.) and D. H. Auston (BTL, Murray Hill); private communications.

Sleat, W. E.

D. J. Bradley, B. Liddy, W. E. Sleat, Opt. Commun. 2, 391 (1971).
[CrossRef]

Slepian, D.

D. Slepian, Bell Syst. Tech. J. 46, 2353 (1967); M. Schroeder, IEEE Spectrum66 (March1969).
[CrossRef]

Starunov, V. S.

Strauss, H. L.

H. S. Gabelnick, H. L. Strauss, J. Chem. Phys. 49, 2334 (1968).
[CrossRef]

Terrell, J.

J. Terrell, Phys. Rev. 16, 1041 (1959).
[CrossRef]

Treacy, E. B.

E. B. Treacy, IEEE J. Quant. Electron. QE-5454 (1969).
[CrossRef]

E. B. Treacy, Phys. Lett. 28A, 34 (1968).

Tumanian, V. A.

F. R. Arutyunian, V. A. Tumanian, Phys. Lett. 4, 176 (1963).
[CrossRef]

Weber, H. P.

H. P. Weber, J. Appl. Phys. 39, 6041 (1968).
[CrossRef]

Wecht, K. W.

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

Wood, O. R.

O. R. Wood, R. L. Abrams, T. J. Bridges, Appl. Phys. Lett. 17, 376 (1970).
[CrossRef]

Ann. Phys. (Paris)

M. Paillette, Ann. Phys. (Paris) 4, 671 (1969).

Appl. Opt.

Appl. Phys. Lett.

M. A. Duguay, J. W. Hansen, Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

M. J. Colles, Appl. Phys. Lett. 18, July (1971).

R. C. Eckardt, C. H. Lee, Appl. Phys. Lett. 15, 425 (1969).
[CrossRef]

R. A. Fisher, P. L. Kelley, T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969).
[CrossRef]

J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, K. W. Wecht, Appl. Phys. Lett. 11, 216 (1967).
[CrossRef]

D. H. Auston, Appl. Phys. Lett. 18, 249 (1971).
[CrossRef]

O. R. Wood, R. L. Abrams, T. J. Bridges, Appl. Phys. Lett. 17, 376 (1970).
[CrossRef]

Bell Syst. Tech. J.

D. Slepian, Bell Syst. Tech. J. 46, 2353 (1967); M. Schroeder, IEEE Spectrum66 (March1969).
[CrossRef]

IEEE J. Quant. Electron.

M. A. Duguay, J. W. Hansen, S. L. Shapiro, IEEE J. Quant. Electron. Qe-6, 725 (1970).
[CrossRef]

E. B. Treacy, IEEE J. Quant. Electron. QE-5454 (1969).
[CrossRef]

K. C. Jungling, O. L. Gaddy, IEEE J. Quant. Electron. Qe-7, 97 (1971).
[CrossRef]

J. P. Hazan, J. Haisma, G. Marie, J. Nussli, IEEE J. Quant. Electron. Qe-6, 744 (1970) and G. Clément, G. Eschard, J. P. Hazan, R. Polaert, in Proceedings of the Ninth International Congress on High-Speed Photography (Society of Motion Picture and Television Engineers, New York, 1970).
[CrossRef]

A. J. Alcock, C. DeMichelis, M. C. Richardson, IEEE J. Quant. Electron. Qe-6, 622 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, IEEE J. Quant. Electron. Qe-7, 37 (1971).
[CrossRef]

J. Appl. Phys.

E. I. Blount, J. R. Klauder, J. Appl. Phys. 40, 2874 (1969).
[CrossRef]

H. P. Weber, J. Appl. Phys. 39, 6041 (1968).
[CrossRef]

J. Chem. Phys.

H. S. Gabelnick, H. L. Strauss, J. Chem. Phys. 49, 2334 (1968).
[CrossRef]

J. Soc. Motion Pict. Telev. Eng.

J. W. Hansen, M. A. Duguay, J. Soc. Motion Pict. Telev. Eng. 80, 73 (1971).

Opt. Commun.

D. J. Bradley, B. Liddy, W. E. Sleat, Opt. Commun. 2, 391 (1971).
[CrossRef]

D. J. Bradley, S. J. Caughey, G. H. C. New, Opt. Commun. 2, 41 (1970).
[CrossRef]

M. A. Duguay, J. W. Hansen, Opt. Commun. 1, 254 (1969).
[CrossRef]

Phys. Lett.

F. R. Arutyunian, V. A. Tumanian, Phys. Lett. 4, 176 (1963).
[CrossRef]

R. C. Miller, Phys. Lett. 26A, 177 (1968), and J. Comly, E. Garmine, Appl. Phys. Lett. 12, 7 (1968).
[CrossRef]

E. B. Treacy, Phys. Lett. 28A, 34 (1968).

Phys. Rev.

J. Terrell, Phys. Rev. 16, 1041 (1959).
[CrossRef]

Phys. Rev. Lett.

R. G. Brewer, C. H. Lee, Phys. Rev. Lett. 21, 267 (1968).
[CrossRef]

R. R. Alfano, S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).
[CrossRef]

Pisma Zh. Eksp. Teor. Fiz.

A. A. Malyutin, M. Ya. Shchelev, Pisma Zh. Eksp. Teor. Fiz. 9, 445 (1969) [JETP Lett. 9, 266 (1969)].

Proc. IEEE

A. J. DeMaria, W. H. Glenn, M. J. Brienza, M. E. Mack, Proc. IEEE 57, 2 (1969).
[CrossRef]

Other

We are grateful to P. A. Fleury (BTL, Murray Hill) for suggesting milk particles. W. W. Wladimiroff (Stockholm Royal Inst. Technology) has also suggested Dupont’s Ludox HS, a 15-μ-diameter silica particle suspension (private communication).

For some materials n2B = Bλ, where B is the usual Kerr constant and λ the measuring wavelength (see Ref. 12, p. 738).

When the gain-4 Nd:glass amplifier is used, the peak shutter transmission is five times higher and the contrast is correspondingly higher. Previously, a shutter extinction ratio as high as 104 had been measured.12

I. L. Fabelinskii, Molecular Light Scattering (Plenum Press, New York, 1968).
[CrossRef]

M. Ya. Shchelev (Moscow Lebedev Inst.) and D. H. Auston (BTL, Murray Hill); private communications.

V. S. Letokhov (Inst. Spectroscopy, Akademgorodok, Moscow); private communication.

V. S. Letokhov (Inst. Spectroscopy, Akademgorodok, Moscow); private communication.

Our laser produced infrared pulses polarized in the horizontal plane. For optimum gating we had to set the axis of P1 at 45° to the vertical. In the future, a z-cut quartz plate could be used to rotate the plane of polarization of the infrared pulses at 45° to the horizontal and thus allow one to orient P1 vertically.

To avoid problems with multiple reflections, the pellicles must reflect only a few percent of the light. A small reflectivity can be obtained by orienting them near the Brewster angle or by antireflection-coating them. Thin glass slides immersed in a near index-matching liquid can serve the same purpose.

We are neglecting here the subpicosecond structure that the ultrashort pulses are known to possess (see Refs. 12, 18, 38) and that our 3-psec instrumental resolution blurs out. If we had subpicosecond resolution, a central spike would appear in the photographs.12,39

M. A. Duguay, J. W. Hansen, National Bureau of Standards Special Publication No. 341 on Damage in Laser Materials (Government Printing Office, Washington, D.C., 1970), pp. 45–49. In this paper we found the Schott glasses type Bk7 and LaSF7 to have an n2B 100 times and 35 times smaller, respectively, than in CS2. An experimental upper bound to the relaxation time was 5 psec.

We realized after the fact that a 20-cm path length could have been achieved by simply folding the beam in the water cell by immersing two mirrors in the water.

W. G. Hyzer, Engineering and Scientific High Speed Photography (Macmillan, New York, 1962).

Reflecting or backscattering picosecond laser pulses from ultrarelativistic particles thus appears to be an intriguing means of producing exceedingly narrow x-ray or γ-ray pulses.

The resulting photograph can be compared to that obtained by an amateur triggering his camera N times at closely spaced but irregular intervals when photographing a flock of N birds.

We are grateful to J. A. Giordmaine (BTL, Murray Hill) for pointing this out.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for photographing light pulses in flight. Movable prism provides for an adjustable delay line. Laser produces a train of ultrashort pulses nominally 5 nsec apart. Delay line is adjusted so that as the nth green pulse in the train traverses the water cell the shutter is being opened by the (n + 1)th infrared pulse. Pulses are represented by their approximate envelopes. Their inner structure remains unknown. Filter F absorbs the infrared pulses but transmits well in the visible.

Fig. 2
Fig. 2

Photograph of ultrashort green pulse in flight (from right to left) through the milky water. Scale is in millimeters in water. Shutter opening time was ≈10 psec. Photograph was originally recorded on a high speed Ektachrome color slide in one laser shot. This black and white reproduction is somewhat overexposed to satisfy publication requirements. On a properly exposed photograph the length of the spot is approximately equal to the length of the infrared pulses which drive the shutter and also give rise to the green pulses. The round spot to the left of the water cell was produced by the infrared pulses entering the camera head-on and being residually transmitted by filter F shown in Fig. 1.

Fig. 3
Fig. 3

Green light pulses 1 and 2 split from one original pulse define the ends of a dumbbell. Under high speed photography, pulse 2 appears at the position indicated by the dotted contour. Thus, the dumbbell appears sheared.

Fig. 4
Fig. 4

Four ultrahigh speed photographs of a dumbbell-shaped light packet illustrating the shear effect. (a) Dumbbell is and appears vertical. (b)–(d) Upper part of dumbbell is rotated away from the camera, which the reader can imagine to be in his hands. A nonrelativistic material dumbbell would appear in (d) with its two ends superimposed. Instead, the light dumbbell appears sheared in the direction of propagation.

Fig. 5
Fig. 5

(a) Solid curve is a photodensitometer tracing of one properly exposed photograph on Polaroid 3000-speed film. The 13-psec width at half-height implies a similar width for the infrared pulse. With nitrobenzene in the shutter an exponential tail accompanies the spot characteristic of a 32 psec relaxation time in nitrobenzene. Scale is equivalent centimeters of air. (b) Shortest spot photographed. Such pulses ≈7 psec at half-height occurred rarely. Scale is in millimeters in water.

Fig. 6
Fig. 6

Three pictures were taken at different delays to show the main pulse and the satellites at 2d/c = 12 cm on either side. Satellites are due to the spacing d between the mode-looking dye cell and one laser mirror and could not be eliminated by changing various laser parameters. Scale is in equivalent centimeters of air.

Fig. 7
Fig. 7

This mosaic was taken in water with exposures brighter than in Fig. 5 but equally short. Main pulse and dye satellite pulses are grossly overexposed, giving an idea of their size relative to the smaller subsidiary pulses clearly visible on the original photographs, usually amounting to ~1% of the main pulse height. Subsidiary pulse in the photograph on the far right was unusually large (10% main pulse) and appeared only once out of ~100 shots. Scale is in equivalent centimeters of air.

Fig. 8
Fig. 8

Schematic model of the infrared laser beam generated by a dye mode-locked Nd:glass laser. Larger pulses are known to possess a substructure not shown here.

Fig. 9
Fig. 9

(a) Setup used to picture-range two glass slides on which the words front and back had been engraved. Camera setup is as in Fig. 1. (b) Each slide is selectively photographed by adjusting properly the delay line in Fig. 1.

Fig. 10
Fig. 10

(a) A piece of thin tissue paper masks a target carrying the drawing of a bell plainly visible below when the tissue is removed. (b) Photograph on upper right is taken in room light illumination; target is not visible. By means of picture-ranging, the bell can be seen in the original photographs (bottom) although with greatly reduced contrast and sharpness.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ n - δ n = n 2 B τ - t E 2 ¯ ( t ) exp [ ( t - t ) / τ ] d t ,
δ n - δ n = n 2 B E 2 ¯ ( t ) .
T = sin 2 ( π n 2 B E 2 / λ ) = 0.23 ,
T ( t ) E 4 ( t ) I 2 ( t )             for E < 20 × 10 6 V / m .
F ( z ) I 2 ( t ) I 2 ( t + z / v g + b ) d t ,
F ( z ) G 4 ( τ ) ,

Metrics