Abstract

A fast and convenient method for the extraction of basic constants from time resolved laser amplifier gain measurements is described. The method is based on the assumption of a two-level laser system having direct electron excitation of the levels involved. The experimentally measured pulsed discharge current waveforms and time resolved gain curves are analyzed by a digital computer and fitted to the above model

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Beaulieu, Appl. Phys. Lett. 16, 504 (1970).
    [CrossRef]
  2. A. K. Laflamme, Rev. Sci. Instrum. 41, 1578 (1970).
    [CrossRef]
  3. G. Sedwick, H. Sequin, Appl. Opt. 9, 2737 (1970).
    [CrossRef]
  4. J. Gilbert, CAP Conference, Winnipeg (1970).
  5. W. J. Sarjeant, Ph.D. Thesis, University of Western Ontario (1971).
  6. E. Brannen, W. J. Sarjeant, IEEE J. Quantum Electron. QE-6, 138 (1970).
    [CrossRef]
  7. W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
    [CrossRef]
  8. W. J. Sarjeant, Z. Kucerovsky, E. Brannen, IEEE J. Quantum Electron. QE-6, 270 (1970).
    [CrossRef]
  9. W. J. Sarjeant, E. Brannen, IEEE J. Quantum Electron. QE-5, 620 (1969).
    [CrossRef]
  10. R. W. Hamming, R. S. Pinkham, J. Assoc. Comput. Mach. 14, 430 (1967).

1970 (6)

A. J. Beaulieu, Appl. Phys. Lett. 16, 504 (1970).
[CrossRef]

A. K. Laflamme, Rev. Sci. Instrum. 41, 1578 (1970).
[CrossRef]

G. Sedwick, H. Sequin, Appl. Opt. 9, 2737 (1970).
[CrossRef]

E. Brannen, W. J. Sarjeant, IEEE J. Quantum Electron. QE-6, 138 (1970).
[CrossRef]

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
[CrossRef]

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, IEEE J. Quantum Electron. QE-6, 270 (1970).
[CrossRef]

1969 (1)

W. J. Sarjeant, E. Brannen, IEEE J. Quantum Electron. QE-5, 620 (1969).
[CrossRef]

1967 (1)

R. W. Hamming, R. S. Pinkham, J. Assoc. Comput. Mach. 14, 430 (1967).

Beaulieu, A. J.

A. J. Beaulieu, Appl. Phys. Lett. 16, 504 (1970).
[CrossRef]

Brannen, E.

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, IEEE J. Quantum Electron. QE-6, 270 (1970).
[CrossRef]

E. Brannen, W. J. Sarjeant, IEEE J. Quantum Electron. QE-6, 138 (1970).
[CrossRef]

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
[CrossRef]

W. J. Sarjeant, E. Brannen, IEEE J. Quantum Electron. QE-5, 620 (1969).
[CrossRef]

Gilbert, J.

J. Gilbert, CAP Conference, Winnipeg (1970).

Hamming, R. W.

R. W. Hamming, R. S. Pinkham, J. Assoc. Comput. Mach. 14, 430 (1967).

Kucerovsky, Z.

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
[CrossRef]

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, IEEE J. Quantum Electron. QE-6, 270 (1970).
[CrossRef]

Laflamme, A. K.

A. K. Laflamme, Rev. Sci. Instrum. 41, 1578 (1970).
[CrossRef]

Pinkham, R. S.

R. W. Hamming, R. S. Pinkham, J. Assoc. Comput. Mach. 14, 430 (1967).

Rumbold, D.

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
[CrossRef]

Sarjeant, W. J.

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, IEEE J. Quantum Electron. QE-6, 270 (1970).
[CrossRef]

E. Brannen, W. J. Sarjeant, IEEE J. Quantum Electron. QE-6, 138 (1970).
[CrossRef]

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
[CrossRef]

W. J. Sarjeant, E. Brannen, IEEE J. Quantum Electron. QE-5, 620 (1969).
[CrossRef]

W. J. Sarjeant, Ph.D. Thesis, University of Western Ontario (1971).

Sedwick, G.

Sequin, H.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. J. Beaulieu, Appl. Phys. Lett. 16, 504 (1970).
[CrossRef]

IEEE J. Quantum Electron. (3)

E. Brannen, W. J. Sarjeant, IEEE J. Quantum Electron. QE-6, 138 (1970).
[CrossRef]

W. J. Sarjeant, Z. Kucerovsky, E. Brannen, IEEE J. Quantum Electron. QE-6, 270 (1970).
[CrossRef]

W. J. Sarjeant, E. Brannen, IEEE J. Quantum Electron. QE-5, 620 (1969).
[CrossRef]

J. Assoc. Comput. Mach. (1)

R. W. Hamming, R. S. Pinkham, J. Assoc. Comput. Mach. 14, 430 (1967).

Rev. Sci. Instrum. (2)

W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, Rev. Sci. Instrum. 41, 1890 (1970).
[CrossRef]

A. K. Laflamme, Rev. Sci. Instrum. 41, 1578 (1970).
[CrossRef]

Other (2)

J. Gilbert, CAP Conference, Winnipeg (1970).

W. J. Sarjeant, Ph.D. Thesis, University of Western Ontario (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Graph of the population inversion function (4) calculated for different time constants for an amplitude constant of C = 1.0 × 10−4App−1μsec−1. I(t) is the pumping current; N2(t)1−4 the population inversion curves. The line I = A3 + B3t shows the linear approximation to the current function (A3 = −85App, B3 = 825App/μsec) between the third and fourth experimental points.

Fig. 2
Fig. 2

Graph of results of evaluation of time resolved gain measurements in the water vapor laser amplifier with addition of helium.8,9 I(t) is the pumping current; N2(t) the calculated population inversion function (full line) fitted to the experimental curve (□). Partial pressures: H2O 1.4 Torr, He 3.6 Torr. Repetition rate: 50 Hz. Extracted constants: 1/λ1 = 2.18 μsec; 1/λ2 = 2.08 μsec; C = 6.53 × 10−4App−1μsec−1; standard deviation of the fit 0.025.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

N 2 ( t ) = C · exp ( - λ 1 t ) 0 T I ( t ) exp ( λ 1 t ) d t .
d N 2 ( t ) = σ v I ( t ) N 0 d t - λ 1 N 2 d t ,
I = A i + B i t ,
i 1 , ( i max - 1 ) .
N 2 ( t ) = C · exp ( - λ 1 t ) 0 T I ( t ) exp ( λ 2 t ) d t ,
N 2 ( t n ) = C exp ( - λ 1 t n ) i = 2 n t i - 1 t i [ ( A i - 1 + B i - 1 t ) exp ( λ 2 t ) ] d t .
N 2 ( t n ) = C exp ( - λ 1 t n ) { i = 2 n [ A i - 1 t i - 1 t i exp ( λ 2 t ) d t + i = 2 n B i - 1 t i - 1 t i t exp ( λ 2 t ) d t ] } .
N 2 ( t n ) = ( C / 2 ) exp ( - λ 1 t n ) × i = 2 n ( exp ( λ 2 t i ) { A i - 1 + B i - 1 [ t i - ( 1 / λ 2 ) ] } - exp ( λ 2 t i - 1 ) { A i - 1 + B i - 1 [ t i - 1 - ( 1 / λ 2 ) ] } ) .
N 2 ( t ) = C 1 exp ( - λ 1 t ) ,

Metrics