Abstract

A low-temperature multiple-pass White cell is described which can be operated at any temperature between 120 K and room temperature. The path length can be varied from 60 m up to 2540 m in 80-m steps. The four-row multiple reflection system, a modified White arrangement, is enclosed in an aluminum dewar and can be focused externally while cold. An approximate expression for the astigmatic image distortion in a cell of the described type is derived.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The ir spectrometers were designed and constructed in the Chemistry Department and the Space Sciences Laboratory at the University of California, Berkeley. This instrument will be described in detail in a later publication. Mariners VI and VII were NASA missions managed by the Jet Propulsion Laboratory and directed by Project Manager H. M. Schurmeier.
  2. G. Herzberg, Astrophys. J. 115, 337 (1952).
    [CrossRef]
  3. A. Watanabe, H. L. Welsh, Can. J. Phys. 45, 820 (1965).
  4. R. P. Blickensderfer, G. E. Ewing, R. Leonard, Appl. Opt. 7, 2214 (1968).
    [CrossRef] [PubMed]
  5. D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Am. 57, 885 (1967).
    [CrossRef]
  6. A multiple-reflection cell with a 20-m optical path which would operate at 77 K was constructed in our laboratory by E. Valenzuela and K. C. Herr, providing experience valuable in our design of the cell described here.
  7. A. R. W. McKeller, N. Rich, V. Soots, Appl. Opt. 9, 222 (1970).
    [CrossRef]
  8. J. U. White, J. Opt. Soc. Am. 32, 285 (1942).
    [CrossRef]
  9. R. E. Cox, Sky and Telescope 32, 159 (1966).
  10. W. D. Buckingham, C. R. Deibert, J. Opt. Soc. Am. 36, 245 (1946).
    [CrossRef]
  11. A commercially available arc (Sylvania) was modified by adding a water-cooled envelope fitted with a salt window. After modification, the envelope was reevacuated and filled with argon to a pressure of 300 Torr.
  12. J. M. Bennett, E. J. Ashley, Appl. Opt. 4, 221 (1965).
    [CrossRef]
  13. This reflectometer was constructed by D. Horn and J. M. McAfee using components from the 20-m multiple-reflection cell mentioned in Ref. 6.
  14. G. Hass, J. Opt. Soc. Am. 45, 945 (1955).
    [CrossRef]
  15. K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
    [CrossRef]
  16. G. C. Pimentel et al., to be published.
  17. G. C. Pimentel et al., to be published.
  18. T. R. Reesor, J. Opt. Soc. Am. 41, 1059L (1951).
    [CrossRef]

1970 (2)

K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
[CrossRef]

A. R. W. McKeller, N. Rich, V. Soots, Appl. Opt. 9, 222 (1970).
[CrossRef]

1968 (1)

1967 (1)

1966 (1)

R. E. Cox, Sky and Telescope 32, 159 (1966).

1965 (2)

J. M. Bennett, E. J. Ashley, Appl. Opt. 4, 221 (1965).
[CrossRef]

A. Watanabe, H. L. Welsh, Can. J. Phys. 45, 820 (1965).

1955 (1)

1952 (1)

G. Herzberg, Astrophys. J. 115, 337 (1952).
[CrossRef]

1951 (1)

T. R. Reesor, J. Opt. Soc. Am. 41, 1059L (1951).
[CrossRef]

1946 (1)

1942 (1)

Ashley, E. J.

Bennett, J. M.

Blickensderfer, R. P.

Buckingham, W. D.

Burch, D. E.

Cox, R. E.

R. E. Cox, Sky and Telescope 32, 159 (1966).

Deibert, C. R.

Ewing, G. E.

Gryvnak, D. A.

Hass, G.

Herr, K. C.

K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
[CrossRef]

Herzberg, G.

G. Herzberg, Astrophys. J. 115, 337 (1952).
[CrossRef]

Horn, D.

K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
[CrossRef]

Leonard, R.

McAfee, J. M.

K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
[CrossRef]

McKeller, A. R. W.

Patty, R. R.

Pimentel, G. C.

K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
[CrossRef]

G. C. Pimentel et al., to be published.

G. C. Pimentel et al., to be published.

Reesor, T. R.

T. R. Reesor, J. Opt. Soc. Am. 41, 1059L (1951).
[CrossRef]

Rich, N.

Soots, V.

Watanabe, A.

A. Watanabe, H. L. Welsh, Can. J. Phys. 45, 820 (1965).

Welsh, H. L.

A. Watanabe, H. L. Welsh, Can. J. Phys. 45, 820 (1965).

White, J. U.

Appl. Opt. (3)

Astron. J. (1)

K. C. Herr, D. Horn, J. M. McAfee, G. C. Pimentel, Astron. J. 75, 883 (1970).
[CrossRef]

Astrophys. J. (1)

G. Herzberg, Astrophys. J. 115, 337 (1952).
[CrossRef]

Can. J. Phys. (1)

A. Watanabe, H. L. Welsh, Can. J. Phys. 45, 820 (1965).

J. Opt. Soc. Am. (5)

Sky and Telescope (1)

R. E. Cox, Sky and Telescope 32, 159 (1966).

Other (6)

A commercially available arc (Sylvania) was modified by adding a water-cooled envelope fitted with a salt window. After modification, the envelope was reevacuated and filled with argon to a pressure of 300 Torr.

This reflectometer was constructed by D. Horn and J. M. McAfee using components from the 20-m multiple-reflection cell mentioned in Ref. 6.

A multiple-reflection cell with a 20-m optical path which would operate at 77 K was constructed in our laboratory by E. Valenzuela and K. C. Herr, providing experience valuable in our design of the cell described here.

The ir spectrometers were designed and constructed in the Chemistry Department and the Space Sciences Laboratory at the University of California, Berkeley. This instrument will be described in detail in a later publication. Mariners VI and VII were NASA missions managed by the Jet Propulsion Laboratory and directed by Project Manager H. M. Schurmeier.

G. C. Pimentel et al., to be published.

G. C. Pimentel et al., to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross section of the dewar assembly.

Fig. 2
Fig. 2

Cryogenic system, schematic.

Fig. 3
Fig. 3

Four-row multiple reflection system, set for twenty-two passes.

Fig. 4
Fig. 4

Optical diagram of the low-temperature multiple-pass cell with entrance and exit optics included. M1, M2, and M4 are spherical mirrors and M3 is an off-axis paraboloidal mirror. A, B, and C are the spherical mirrors of the multiple-reflection optics; the corner mirror assembly D is omitted. CH 1 and CH 2 indicate the options to use the Mariner infrared spectrometer either in channel 1 (4–14.5 μ) or in channel 2 (1.9–6 μ).

Fig. 5
Fig. 5

Sliding carriage for mirror holders for mirrors A and D (mirror D is shown in place).

Fig. 6
Fig. 6

Optical path in a four-row multiple-reflection system pertaining to the derivation of the astigmatic image distortion. The optical axes of mirrors B and C are marked by dashed lines. Successive passes are numbered from 1 to 14. Angle φ1 belongs to passes 1 and 2, angle φ2 to passes 3 and 4, etc. For the chosen adjustment of fourteen passes, angles φ3 and φ6 are zero.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ l = d 2 r f [ 1 4 + 1 j 2 K = 1 K = j ( j - K ) 2 ] ,
( 1 / a ) + ( 1 / t ) = [ 2 / ( r cos φ ) ]             and             ( 1 / a ) + ( 1 / s ) = [ ( 2 cos φ ) / r ] ,
s - t = ( 2 r a 2 sin 2 φ ) / [ ( 4 a 2 + r 2 ) cos φ - 2 a r ( 1 + cos 2 φ ) ]
s - t = 2 r φ 2 Δ S .
Δ S total = 2 r Σ φ i 2 .
φ 1 = d / ( 2 r ) ,             φ 2 = φ 4 = φ 5 = φ 7 = [ d - ( d / 2 ) ] / 2 r , φ 3 = φ 6 = 0.
Δ S total = 2 r [ d 2 4 r 2 + 4 · d 2 4 r 2 ( 1 2 ) 2 ] .
Δ S total = 2 d 2 r [ 1 4 + 1 j 2 K = 1 K = j ( j - K ) 2 ] .
Δ l = ( Δ S total ) / ( 2 f ) .

Metrics