Abstract

Holograms have been constructed in photopolymer materials which give bright, low-noise images. These holograms are of the volume type and have no surface variations in all but a few special cases. They are constructed in virtually real time and in situ, requiring no processing. Materials sensitive to both uv and blue-green radiation have been used. In this paper, the mechanism of hologram formation is examined. Experimental results on sensitivity, spatial frequency response, particle scattering noise, and nonlinearities are discussed. A few holographic applications of the material are presented.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, in Proceedings of Symposium on Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), pp. 605–617.
  2. A. A. Friesem, J. L. Walker, Appl. Opt. 9, 201 (1970).
    [CrossRef] [PubMed]
  3. T. A. Shankoff, Appl. Opt. 7, 2101 (1968).
    [CrossRef] [PubMed]
  4. N. K. Sheridan, Appl. Phys. Lett. 12, 316 (1968).
    [CrossRef]
  5. H. J. Gerritsen, W. J. Hannan, E. G. Ramberg, Appl. Opt. 7, 2301 (1968).
    [CrossRef] [PubMed]
  6. M. J. Beesley, J. G. Castledine, Appl. Opt. 9, 2720 (1970).
    [CrossRef] [PubMed]
  7. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
    [CrossRef]
  8. J. A. Jenney, J. Opt. Soc. Amer. 60, 1135 (1970).
  9. R. H. Wopschall, presented at OSA meeting, Tucson, Arizona, April 1971.
  10. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 93.
  11. J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
    [CrossRef] [PubMed]
  12. B. P. Hildegrand, K. A. Haines, Appl. Opt. 5, 172 (1966).
    [CrossRef]

1970

1969

J. C. Urbach, R. W. Meier, Appl. Opt. 8, 2269 (1969).
[CrossRef] [PubMed]

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

1968

1966

Beesley, M. J.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 93.

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

Castledine, J. G.

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

Friesem, A. A.

Gerritsen, H. J.

Haines, K. A.

Hannan, W. J.

Hildegrand, B. P.

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

Jenney, J. A.

J. A. Jenney, J. Opt. Soc. Amer. 60, 1135 (1970).

Kogelnik, H.

H. Kogelnik, in Proceedings of Symposium on Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), pp. 605–617.

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

McClung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

Meier, R. W.

Ramberg, E. G.

Shankoff, T. A.

Sheridan, N. K.

N. K. Sheridan, Appl. Phys. Lett. 12, 316 (1968).
[CrossRef]

Urbach, J. C.

Walker, J. L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 93.

Wopschall, R. H.

R. H. Wopschall, presented at OSA meeting, Tucson, Arizona, April 1971.

Appl. Opt.

Appl. Phys. Lett.

N. K. Sheridan, Appl. Phys. Lett. 12, 316 (1968).
[CrossRef]

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, F. J. McClung, Appl. Phys. Lett. 14, 159 (1969).
[CrossRef]

J. Opt. Soc. Amer.

J. A. Jenney, J. Opt. Soc. Amer. 60, 1135 (1970).

Other

R. H. Wopschall, presented at OSA meeting, Tucson, Arizona, April 1971.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 93.

H. Kogelnik, in Proceedings of Symposium on Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), pp. 605–617.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Index variations during hologram formation.

Fig. 2
Fig. 2

Differential index during hologram formation.

Fig. 3
Fig. 3

Diffracted light intensity during formation of typical hologram.

Fig. 4
Fig. 4

Diffracted light intensity during hologram formation for continuous exposure at low intensity.

Fig. 5
Fig. 5

Diffracted light intensity during hologram formation for continuous exposure at high intensity.

Fig. 6
Fig. 6

Diffracted light intensity during hologram formation with low spatial frequencies.

Fig. 7
Fig. 7

Spatial frequency response of photopolymer.

Fig. 8
Fig. 8

Nonlinearity of photopolymer.

Fig. 9
Fig. 9

Real-time interferometry.

Fig. 10
Fig. 10

Reconstructed image in incoherent white light from hologram constructed at 514 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n p 2 = ( 1 + 2 α N ) / ( 1 - α N ) ,
n p 2 = ( 1 + 2 β / t ) / ( 1 - β / t ) ,
Δ n = Δ t [ ( n p 2 - 1 ) ( n p 2 + 2 ) ] / 6 n t ,

Metrics