Abstract

This paper analyzes the signal-to-noise ratio for a coaxial laser system that heterodynes the signal backscattered from the atmospheric aerosol. The laser radiation, which is assumed to have a wavefront with a gaussian amplitude distribution, is transmitted into the atmosphere through a telescope. Radiation is collected by the same telescope and directed onto a detector where it is mixed with a local oscillator beam originating from the same laser source. The signal-to-noise ratio at the output of the detector is calculated under shot noise limited conditions. The calculation is general and applies for both near and far fields and for focused and unfocused systems. Three specific cases are considered. These are a pulsed system, a cw system illuminating an infinite target, and a cw system illuminating a target of finite extent.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (32)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription