Abstract

Optical phase modulation has been applied to a system for digital data recording based on the photography of a multiplicity of superposed interference fields. When piezoelectrically driven mirrors or electrooptic crystals are placed suitably in the interfering beams and sinusoidally excited to the proper amplitude, the corresponding fringe pattern exposure is effectively spoiled. Since the effect arises from variations in optical path or refractive index, tolerances on optical quality are relatively modest. Extinction ratios in excess of 100:1 are readily obtained.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Lamberts, G. C. Higgins, Phot. Sci. Eng. 10, 209 (1966).
  2. L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, Phot. Sci. Eng. 10, 263 (1966).
  3. L. F. Shew, IEEE Conference on Laser Engineering and Applications, Washington, D. C., 26–28 May 1969.
  4. L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, K. F. Stultz, Appl. Opt. 9, 2753 (1970).
    [Crossref] [PubMed]
  5. H. Osterberg, J. Opt. Soc. Amer. 22, 19 (1932).
    [Crossref]
  6. E. G. Spencer, P. V. Lenzo, A. A. Ballman, Proc. IEEE 55, 2074 (1967).
    [Crossref]
  7. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
    [Crossref]
  8. S. B. H. Billings, J. Opt. Soc. Amer. 39, 797 (1949).
    [Crossref]
  9. R. O’B. Carpenter, J. Opt. Soc. Amer. 40, 225 (1950).
    [Crossref]
  10. J. C. Kemp, J. Opt. Soc. Amer. 59, 950 (1969).
  11. For example, Clevite Corp. PZT-5.
  12. K. W. Ragland, R. E. Cullen, Rev. Sci. Instrum. 38, 740, (1967).
    [Crossref]
  13. Harshaw Chemical Company.
  14. Isomet Corporation.

1970 (1)

1969 (1)

J. C. Kemp, J. Opt. Soc. Amer. 59, 950 (1969).

1967 (2)

K. W. Ragland, R. E. Cullen, Rev. Sci. Instrum. 38, 740, (1967).
[Crossref]

E. G. Spencer, P. V. Lenzo, A. A. Ballman, Proc. IEEE 55, 2074 (1967).
[Crossref]

1966 (3)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

R. L. Lamberts, G. C. Higgins, Phot. Sci. Eng. 10, 209 (1966).

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

1950 (1)

R. O’B. Carpenter, J. Opt. Soc. Amer. 40, 225 (1950).
[Crossref]

1949 (1)

S. B. H. Billings, J. Opt. Soc. Amer. 39, 797 (1949).
[Crossref]

1932 (1)

H. Osterberg, J. Opt. Soc. Amer. 22, 19 (1932).
[Crossref]

Baldwin, R. E.

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, K. F. Stultz, Appl. Opt. 9, 2753 (1970).
[Crossref] [PubMed]

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Ballman, A. A.

E. G. Spencer, P. V. Lenzo, A. A. Ballman, Proc. IEEE 55, 2074 (1967).
[Crossref]

Billings, S. B. H.

S. B. H. Billings, J. Opt. Soc. Amer. 39, 797 (1949).
[Crossref]

Blackmer, L. L.

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, K. F. Stultz, Appl. Opt. 9, 2753 (1970).
[Crossref] [PubMed]

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Carpenter, R. O’B.

R. O’B. Carpenter, J. Opt. Soc. Amer. 40, 225 (1950).
[Crossref]

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

Cullen, R. E.

K. W. Ragland, R. E. Cullen, Rev. Sci. Instrum. 38, 740, (1967).
[Crossref]

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

Higgins, G. C.

R. L. Lamberts, G. C. Higgins, Phot. Sci. Eng. 10, 209 (1966).

Kemp, J. C.

J. C. Kemp, J. Opt. Soc. Amer. 59, 950 (1969).

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

Lamberts, R. L.

R. L. Lamberts, G. C. Higgins, Phot. Sci. Eng. 10, 209 (1966).

Lenzo, P. V.

E. G. Spencer, P. V. Lenzo, A. A. Ballman, Proc. IEEE 55, 2074 (1967).
[Crossref]

Osterberg, H.

H. Osterberg, J. Opt. Soc. Amer. 22, 19 (1932).
[Crossref]

Ragland, K. W.

K. W. Ragland, R. E. Cullen, Rev. Sci. Instrum. 38, 740, (1967).
[Crossref]

Shew, L. F.

L. F. Shew, IEEE Conference on Laser Engineering and Applications, Washington, D. C., 26–28 May 1969.

Skinner, J. G.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

Spencer, E. G.

E. G. Spencer, P. V. Lenzo, A. A. Ballman, Proc. IEEE 55, 2074 (1967).
[Crossref]

Stultz, K. F.

VanKerkhove, A. P.

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, K. F. Stultz, Appl. Opt. 9, 2753 (1970).
[Crossref] [PubMed]

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Wemple, S. H.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

Appl. Opt. (1)

J. Appl. Phys. (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, S. H. Wemple, J. Appl. Phys. 37, 388 (1966).
[Crossref]

J. Opt. Soc. Amer. (4)

S. B. H. Billings, J. Opt. Soc. Amer. 39, 797 (1949).
[Crossref]

R. O’B. Carpenter, J. Opt. Soc. Amer. 40, 225 (1950).
[Crossref]

J. C. Kemp, J. Opt. Soc. Amer. 59, 950 (1969).

H. Osterberg, J. Opt. Soc. Amer. 22, 19 (1932).
[Crossref]

Phot. Sci. Eng. (2)

R. L. Lamberts, G. C. Higgins, Phot. Sci. Eng. 10, 209 (1966).

L. L. Blackmer, A. P. VanKerkhove, R. E. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Proc. IEEE (1)

E. G. Spencer, P. V. Lenzo, A. A. Ballman, Proc. IEEE 55, 2074 (1967).
[Crossref]

Rev. Sci. Instrum. (1)

K. W. Ragland, R. E. Cullen, Rev. Sci. Instrum. 38, 740, (1967).
[Crossref]

Other (4)

Harshaw Chemical Company.

Isomet Corporation.

L. F. Shew, IEEE Conference on Laser Engineering and Applications, Washington, D. C., 26–28 May 1969.

For example, Clevite Corp. PZT-5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Data recording by means of multiple beam interference.

Fig. 2
Fig. 2

Fringe motion produced by retardation in one beam. The solid line, —, shows wavefronts; the perforated line, – – –, retarded wavefronts. Shading indicates fringe displacement.

Fig. 3
Fig. 3

Retardation by displacement of a plane mirror through distance d. aa, bb, and oc represent wavefronts. The path difference Δl = of + fe.

Fig. 4
Fig. 4

A simple two-beam interferometer for testing phase modulators.

Fig. 5
Fig. 5

Fringe motion vs excitation potentials for several modulators. Photographic data: ● (LN); □ (LT). Photoelectric data: ○ (piezoelectrically driven mirror); △ (LT).

Fig. 6
Fig. 6

A piezoelectrically driven mirror modulator.

Fig. 7
Fig. 7

Oscilloscope traces showing fringe motion produced by a piezoelectrically driven mirror modulator in a Twyman-Green interferometer.

Fig. 8
Fig. 8

Photomicrographs illustrating the spoiling of exposed patterns.

Fig. 9
Fig. 9

The geometry of various LN and LT samples.

Fig. 10
Fig. 10

First-order diffraction intensity vs applied potential in LT.

Fig. 11
Fig. 11

Measurement of cross talk in an LT phase modulator for several beams: (a) electrode configuration; (b) fringe motion vs relative beam position.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = 2 / T 0 T / 2 I i d t = K [ 1 + M J 0 ( 2 π R / h ) cos ( 2 π x / h ) ] .

Metrics