Abstract

The curves-of-growth of water vapor were measured in the temperature range from 1000 K to 3000 K at a total pressure of 1 atm with a strip burner 6 m long. The fuel was gaseous hydrogen and oxygen. The statistical band model with exponential line intensity distribution was used to reduce the experimental data to yield spectral absorption coefficients (line strength/line spacing) and fine structure parameters (line width/line spacing), averaged over 25-cm−1 spectral intervals, in the region from 1 μ to 10 μ. Because of the fuels used, the foreign gas broadener was oxygen. An expression is given which permits the calculation of the spectral emission as a function of total pressure, partial pressure of water vapor, and foreign gases and path length. The range of total pressures is limited to the region in which collision broadening is predominant (~0.1 atm to several atm). The results are compared with previous results and with independent laboratory studies. The agreement is excellent.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Goody, The Physics of the Stratosphere (Cambridge University Press, Cambridge, 1954), pp. 161–63.
  2. W. M. Elsasser, Harvard Meteorological Studies No. 6, Blue Hill Observatory, Milton, Mass., 1942.
  3. G. N. Plass, J. Opt. Soc. Amer. 48, 690 (1958).
    [CrossRef]
  4. H. C. Hottel, V. C. Smith, Trans. Amer. Soc. Mech. Engrs. 57, 463 (1935).
  5. ASME Supplement to Power Test Codes, Flow Measurement PTC 19.5, 4(1959).
  6. C. C. Ferriso, C. B. Ludwig, J. A. L. Thomson, J. Quant. Spectrosc. Rad. Transfer 6, 241 (1966).
    [CrossRef]
  7. J. A. L. Thomson, General Dynamics-Convair, San Diego, Calif., GD/C-DBE-66-001a, February1966.
  8. W. S. Benedict, L. D. Kaplan, J. Quant. Spectrosc. Rad. Transfer 4, 453 (1964).
    [CrossRef]
  9. J. A. L. Thomson, C. B. Ludwig, to be submitted to Appl. Opt.
  10. D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt. 1, 359 (1962).
    [CrossRef]
  11. W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).
  12. K. P. Vasilevsky, B. S. Neporent, Opt. Spectrosc. 7, 353 (1959).
  13. C. C. Ferriso, C. B. Ludwig, F. P. Boynton, Int. J. Heat Mass Transfer 9, 853 (1966).
    [CrossRef]
  14. C. B. Ludwig, C. C. Ferriso, J. Quant. Spectrosc. Rad. Transfer 7, 7 (1966).
    [CrossRef]
  15. F. P. Boynton, C. B. Ludwig, Int. J. Heat Mass Transfer, in press.
  16. R. H. Tourin, P. M. Henry, AFCRC-TR-60-203, The Warner and Swasey Company, Control Instrument Division (December1959).
  17. D. E. Burch, D. A. Gryvnak, Report U-1929, Ford Motor Co., Aeronutronics Division (31Oct.1962).
  18. D. E. Burch, W. L. France, D. Williams, Appl. Opt. 2, 585 (1963).
    [CrossRef]
  19. K. E. Nelson, M. S. Thesis, University of Calif. (1959).
  20. J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Amer. 46, 186 (1956).
    [CrossRef]
  21. R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 3, 91 (1963).
    [CrossRef]
  22. R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 4, 343 (1964).
    [CrossRef]
  23. R. Goldstein, Ph.D. Thesis, California Institute of Technology (1964).
  24. F. S. Simmons, C. B. Arnold, D. H. Smith, BAMIRAC Report 4613-91-T, Infrared Physics Laboratory, Willow Run Laboratories (August1965).
  25. U. P. Oppenheim, A. Goldman, Tenth Symposium on Combustion (Combustion Institute, Pittsburgh, 1965), p. 185.
    [CrossRef]
  26. W. J. Herget, J. S. Muirhead, J. Opt. Soc. Amer. 60, 180 (1970).
    [CrossRef]
  27. C. C. Ferriso, C. B. Ludwig, J. Quant. Spectrosc. Rad. Transfer 4, 215 (1964).
    [CrossRef]
  28. C. C. Ferriso, C. B. Ludwig, J. Chem. Phys. 41, 1668 (1964).
    [CrossRef]
  29. C. B. Ludwig, C. C. Ferriso, C. N. Abeyta, J. Quant. Spectrosc. Rad. Transfer 5, 281 (1965).
    [CrossRef]
  30. C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
    [CrossRef]

1970 (1)

W. J. Herget, J. S. Muirhead, J. Opt. Soc. Amer. 60, 180 (1970).
[CrossRef]

1966 (3)

C. C. Ferriso, C. B. Ludwig, J. A. L. Thomson, J. Quant. Spectrosc. Rad. Transfer 6, 241 (1966).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, F. P. Boynton, Int. J. Heat Mass Transfer 9, 853 (1966).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, J. Quant. Spectrosc. Rad. Transfer 7, 7 (1966).
[CrossRef]

1965 (2)

C. B. Ludwig, C. C. Ferriso, C. N. Abeyta, J. Quant. Spectrosc. Rad. Transfer 5, 281 (1965).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
[CrossRef]

1964 (4)

C. C. Ferriso, C. B. Ludwig, J. Quant. Spectrosc. Rad. Transfer 4, 215 (1964).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, J. Chem. Phys. 41, 1668 (1964).
[CrossRef]

W. S. Benedict, L. D. Kaplan, J. Quant. Spectrosc. Rad. Transfer 4, 453 (1964).
[CrossRef]

R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 4, 343 (1964).
[CrossRef]

1963 (2)

D. E. Burch, W. L. France, D. Williams, Appl. Opt. 2, 585 (1963).
[CrossRef]

R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 3, 91 (1963).
[CrossRef]

1962 (1)

1959 (3)

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

K. P. Vasilevsky, B. S. Neporent, Opt. Spectrosc. 7, 353 (1959).

ASME Supplement to Power Test Codes, Flow Measurement PTC 19.5, 4(1959).

1958 (1)

G. N. Plass, J. Opt. Soc. Amer. 48, 690 (1958).
[CrossRef]

1956 (1)

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Amer. 46, 186 (1956).
[CrossRef]

1935 (1)

H. C. Hottel, V. C. Smith, Trans. Amer. Soc. Mech. Engrs. 57, 463 (1935).

Abeyta, C. N.

C. B. Ludwig, C. C. Ferriso, C. N. Abeyta, J. Quant. Spectrosc. Rad. Transfer 5, 281 (1965).
[CrossRef]

Arnold, C. B.

F. S. Simmons, C. B. Arnold, D. H. Smith, BAMIRAC Report 4613-91-T, Infrared Physics Laboratory, Willow Run Laboratories (August1965).

Benedict, W. S.

W. S. Benedict, L. D. Kaplan, J. Quant. Spectrosc. Rad. Transfer 4, 453 (1964).
[CrossRef]

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

Boynton, F. P.

C. C. Ferriso, C. B. Ludwig, F. P. Boynton, Int. J. Heat Mass Transfer 9, 853 (1966).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
[CrossRef]

F. P. Boynton, C. B. Ludwig, Int. J. Heat Mass Transfer, in press.

Burch, D. E.

D. E. Burch, W. L. France, D. Williams, Appl. Opt. 2, 585 (1963).
[CrossRef]

D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt. 1, 359 (1962).
[CrossRef]

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Amer. 46, 186 (1956).
[CrossRef]

D. E. Burch, D. A. Gryvnak, Report U-1929, Ford Motor Co., Aeronutronics Division (31Oct.1962).

Elsasser, W. M.

W. M. Elsasser, Harvard Meteorological Studies No. 6, Blue Hill Observatory, Milton, Mass., 1942.

Ferriso, C. C.

C. C. Ferriso, C. B. Ludwig, J. A. L. Thomson, J. Quant. Spectrosc. Rad. Transfer 6, 241 (1966).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, J. Quant. Spectrosc. Rad. Transfer 7, 7 (1966).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, F. P. Boynton, Int. J. Heat Mass Transfer 9, 853 (1966).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, C. N. Abeyta, J. Quant. Spectrosc. Rad. Transfer 5, 281 (1965).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, J. Quant. Spectrosc. Rad. Transfer 4, 215 (1964).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, J. Chem. Phys. 41, 1668 (1964).
[CrossRef]

France, W. L.

Goldman, A.

U. P. Oppenheim, A. Goldman, Tenth Symposium on Combustion (Combustion Institute, Pittsburgh, 1965), p. 185.
[CrossRef]

Goldstein, R.

R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 4, 343 (1964).
[CrossRef]

R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 3, 91 (1963).
[CrossRef]

R. Goldstein, Ph.D. Thesis, California Institute of Technology (1964).

Goody, R. M.

R. M. Goody, The Physics of the Stratosphere (Cambridge University Press, Cambridge, 1954), pp. 161–63.

Gryvnak, D. A.

D. E. Burch, D. A. Gryvnak, Report U-1929, Ford Motor Co., Aeronutronics Division (31Oct.1962).

Henry, P. M.

R. H. Tourin, P. M. Henry, AFCRC-TR-60-203, The Warner and Swasey Company, Control Instrument Division (December1959).

Herget, W. J.

W. J. Herget, J. S. Muirhead, J. Opt. Soc. Amer. 60, 180 (1970).
[CrossRef]

Hottel, H. C.

H. C. Hottel, V. C. Smith, Trans. Amer. Soc. Mech. Engrs. 57, 463 (1935).

Howard, J. N.

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Amer. 46, 186 (1956).
[CrossRef]

Kaplan, L. D.

W. S. Benedict, L. D. Kaplan, J. Quant. Spectrosc. Rad. Transfer 4, 453 (1964).
[CrossRef]

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

Ludwig, C. B.

C. C. Ferriso, C. B. Ludwig, J. A. L. Thomson, J. Quant. Spectrosc. Rad. Transfer 6, 241 (1966).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, F. P. Boynton, Int. J. Heat Mass Transfer 9, 853 (1966).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, J. Quant. Spectrosc. Rad. Transfer 7, 7 (1966).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, C. N. Abeyta, J. Quant. Spectrosc. Rad. Transfer 5, 281 (1965).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, J. Chem. Phys. 41, 1668 (1964).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, J. Quant. Spectrosc. Rad. Transfer 4, 215 (1964).
[CrossRef]

F. P. Boynton, C. B. Ludwig, Int. J. Heat Mass Transfer, in press.

J. A. L. Thomson, C. B. Ludwig, to be submitted to Appl. Opt.

Malkmus, W.

C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
[CrossRef]

Muirhead, J. S.

W. J. Herget, J. S. Muirhead, J. Opt. Soc. Amer. 60, 180 (1970).
[CrossRef]

Nelson, K. E.

K. E. Nelson, M. S. Thesis, University of Calif. (1959).

Neporent, B. S.

K. P. Vasilevsky, B. S. Neporent, Opt. Spectrosc. 7, 353 (1959).

Oppenheim, U. P.

U. P. Oppenheim, A. Goldman, Tenth Symposium on Combustion (Combustion Institute, Pittsburgh, 1965), p. 185.
[CrossRef]

Plass, G. N.

G. N. Plass, J. Opt. Soc. Amer. 48, 690 (1958).
[CrossRef]

Simmons, F. S.

F. S. Simmons, C. B. Arnold, D. H. Smith, BAMIRAC Report 4613-91-T, Infrared Physics Laboratory, Willow Run Laboratories (August1965).

Singleton, E. B.

Smith, D. H.

F. S. Simmons, C. B. Arnold, D. H. Smith, BAMIRAC Report 4613-91-T, Infrared Physics Laboratory, Willow Run Laboratories (August1965).

Smith, V. C.

H. C. Hottel, V. C. Smith, Trans. Amer. Soc. Mech. Engrs. 57, 463 (1935).

Thomson, J. A. L.

C. C. Ferriso, C. B. Ludwig, J. A. L. Thomson, J. Quant. Spectrosc. Rad. Transfer 6, 241 (1966).
[CrossRef]

J. A. L. Thomson, General Dynamics-Convair, San Diego, Calif., GD/C-DBE-66-001a, February1966.

J. A. L. Thomson, C. B. Ludwig, to be submitted to Appl. Opt.

Tourin, R. H.

R. H. Tourin, P. M. Henry, AFCRC-TR-60-203, The Warner and Swasey Company, Control Instrument Division (December1959).

Vasilevsky, K. P.

K. P. Vasilevsky, B. S. Neporent, Opt. Spectrosc. 7, 353 (1959).

Williams, D.

Appl. Opt. (2)

ASME Supplement to Power Test Codes, Flow Measurement PTC 19.5, 4 (1)

ASME Supplement to Power Test Codes, Flow Measurement PTC 19.5, 4(1959).

Int. J. Heat Mass Transfer (1)

C. C. Ferriso, C. B. Ludwig, F. P. Boynton, Int. J. Heat Mass Transfer 9, 853 (1966).
[CrossRef]

J. Chem. Phys. (2)

W. S. Benedict, L. D. Kaplan, J. Chem. Phys. 30, 388 (1959).

C. C. Ferriso, C. B. Ludwig, J. Chem. Phys. 41, 1668 (1964).
[CrossRef]

J. Opt. Soc. Amer. (3)

W. J. Herget, J. S. Muirhead, J. Opt. Soc. Amer. 60, 180 (1970).
[CrossRef]

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Amer. 46, 186 (1956).
[CrossRef]

G. N. Plass, J. Opt. Soc. Amer. 48, 690 (1958).
[CrossRef]

J. Quant. Spectrosc. Rad. Transfer (8)

C. C. Ferriso, C. B. Ludwig, J. A. L. Thomson, J. Quant. Spectrosc. Rad. Transfer 6, 241 (1966).
[CrossRef]

W. S. Benedict, L. D. Kaplan, J. Quant. Spectrosc. Rad. Transfer 4, 453 (1964).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, J. Quant. Spectrosc. Rad. Transfer 7, 7 (1966).
[CrossRef]

R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 3, 91 (1963).
[CrossRef]

R. Goldstein, J. Quant. Spectrosc. Rad. Transfer 4, 343 (1964).
[CrossRef]

C. C. Ferriso, C. B. Ludwig, J. Quant. Spectrosc. Rad. Transfer 4, 215 (1964).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, C. N. Abeyta, J. Quant. Spectrosc. Rad. Transfer 5, 281 (1965).
[CrossRef]

C. B. Ludwig, C. C. Ferriso, W. Malkmus, F. P. Boynton, J. Quant. Spectrosc. Rad. Transfer 5, 697 (1965).
[CrossRef]

Opt. Spectrosc. (1)

K. P. Vasilevsky, B. S. Neporent, Opt. Spectrosc. 7, 353 (1959).

Trans. Amer. Soc. Mech. Engrs. (1)

H. C. Hottel, V. C. Smith, Trans. Amer. Soc. Mech. Engrs. 57, 463 (1935).

Other (11)

R. M. Goody, The Physics of the Stratosphere (Cambridge University Press, Cambridge, 1954), pp. 161–63.

W. M. Elsasser, Harvard Meteorological Studies No. 6, Blue Hill Observatory, Milton, Mass., 1942.

J. A. L. Thomson, C. B. Ludwig, to be submitted to Appl. Opt.

J. A. L. Thomson, General Dynamics-Convair, San Diego, Calif., GD/C-DBE-66-001a, February1966.

K. E. Nelson, M. S. Thesis, University of Calif. (1959).

F. P. Boynton, C. B. Ludwig, Int. J. Heat Mass Transfer, in press.

R. H. Tourin, P. M. Henry, AFCRC-TR-60-203, The Warner and Swasey Company, Control Instrument Division (December1959).

D. E. Burch, D. A. Gryvnak, Report U-1929, Ford Motor Co., Aeronutronics Division (31Oct.1962).

R. Goldstein, Ph.D. Thesis, California Institute of Technology (1964).

F. S. Simmons, C. B. Arnold, D. H. Smith, BAMIRAC Report 4613-91-T, Infrared Physics Laboratory, Willow Run Laboratories (August1965).

U. P. Oppenheim, A. Goldman, Tenth Symposium on Combustion (Combustion Institute, Pittsburgh, 1965), p. 185.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (31)

Fig. 1
Fig. 1

Schematic of a 30-cm section of the multiple-slot burner. (The orifice plate inside the plenum chamber is not shown.)

Fig. 2
Fig. 2

Simplified diagram of the burner installation.

Fig. 3
Fig. 3

Photograph of the burner installed inside the tank.

Fig. 4
Fig. 4

Photograph of the main controls inside the blockhouse. Recording equipment is seen at the right-hand side.

Fig. 5
Fig. 5

Schematic diagram of the optical system, with only a portion of the burner in operation.

Fig. 6
Fig. 6

Calculated mole fractions of H2O, O2, and H2.

Fig. 7
Fig. 7

Flame temperature as a function of the mixture ratio (mass flow ratio O2/H2). (Circles are the measured temperature, the solid line is the best fit through the experimental points, and the dashed line is the adiabatically calculated temperature.)

Fig. 8
Fig. 8

Observed emissivities at ω = 3450 cm−1 as a function of the temperature for l = 150 cm. The solid line is a quadratic least-square fit.

Fig. 9
Fig. 9

Curve of growth at 2000 K for ω = 3500 cm−1 in terms of [−u/ln(1 − )]2 vs u.

Fig. 10
Fig. 10

Comparison of high- and low-resolution data at T = 1450 K, and u = 4.9 cm at STP between 3880 and 4200 cm−1. (Δω ~ 1 cm−1 and 20 cm−1.)

Fig. 11
Fig. 11

Comparison of high- and low-resolution data at T = 2550 K and u = 6.42 cm at STP between 3800 and 4500 cm−1. (Δω ~ 1 cm−1 and 20 cm−1.)

Fig. 12
Fig. 12

Comparison of previous (*) and present (solid line) absorption coefficients (m−1 atm−1)STP at 300K.

Fig. 13
Fig. 13

Comparison of previous (*) and present (solid line) absorption coefficients (cm−1 atm−1)STP at 600K.

Fig. 14
Fig. 14

Comparison of previous (*) and present (solid line) absorption coefficients (cm−1 atm−1)STP at 1000 K.

Fig. 15
Fig. 15

Comparison of previous (*) and present (solid line) absorption coefficients (cm−1 atm−1)STP at 1500 K.

Fig. 16
Fig. 16

Comparison of previous (*) and present (solid line) absorption coefficients (cm−1 atm−1)STP at 2000 K.

Fig. 17
Fig. 17

Comparison of previous (*) and present (solid line) absorption coefficients (cm−1 atm−1)STP at 2500 K.

Fig. 18
Fig. 18

Comparison of previous (*) and present (solid line) absorption coefficients (cm−1 atm−1)STP at 3000K.

Fig. 19
Fig. 19

Plot of 1/d (cm−1) vs ω between 1150 cm−1 and 7500 cm−1 for T = 600 K, 1000 K, 1500 K, 2000 K, 2500 K, and 3000 K. The extrapolated regions are indicated by dashed lines.

Fig. 20
Fig. 20

Error in due to uncertainty of ±3% in T vs ω for three different temperatures.

Fig. 21
Fig. 21

Rms scatter σ(%) in fit of experimental values to curve-of-growth between 2500 and 9300 cm−1 at T = 2000 K.

Fig. 22
Fig. 22

Comparison of calculated (*) and experimental spectrum at 1.38 μ (Nelson19). T = 1111 K, u = 19 (cm atm) STP, p = 2 atm, 100% water vapor.

Fig. 23
Fig. 23

Comparison of calculated (*) and experimental spectrum at 1.38 μ (Burch and Gryvnak17). T = 1200 K, u = 2.35 (cnr atm) STP, p = 1 atm, 100% water vapor.

Fig. 24
Fig. 24

Comparison of calculated (*) and experimental spectrum at 1.9 (Nelson19). T = 832 K, u = 12.7 (cm atm)STP, p = 1 atm, 100% water vapor.

Fig. 25
Fig. 25

Comparison of calculated (*) and experimental spectrum at 1.9 μ (Burch and Gryvnak17). T = 900 K, u = 2.35 (cm atm)STP, p = 1 atm, 100% water vapor.

Fig. 26
Fig. 26

Comparison of calculated (*) and experimental spectrum at 2.7 μ (Burch and Gryvnak17). T = 900 K, u = 0.59 (cm atm)STP, p = 0.25 atm, 100% water vapor.

Fig. 27
Fig. 27

Comparison of calculated (*) and experimental spectrum at 2.7 μ (Burch and Gryvnak13). T = 1500K, u = 0.355 (cm atm) STP, p = 0.25 atm, 100% water vapor.

Fig. 28
Fig. 28

Comparison of calculated and experimental spectrum at 2.7 μ (Tourin and Henry16). T = 1273 K, u = 1.56 (cm atm) STP, p = 0.921 atm, 62.1% water vapor.

Fig. 29
Fig. 29

Comparison of calculated (Δ) and experimental spectrum at 2.7 μ (Simmons et al.24). T = 1177 K, l = 60 cm, p = 1.196 atm., 0.319 atm, and 0.101 atm, 100% water vapor.

Fig. 30
Fig. 30

Comparison of calculated (*) and experimental spectrm at 6.3 μ (Nelson19). T = 555 K, u = 38 (cm atm)STP, p = 2 atm, 100% water vapor.

Fig. 31
Fig. 31

Comparison of calculated (*) and experimental spectrum at 6.3 μ (Nelson19). T = 1111 K, u = 19 (cm atm)STP, p = 2 atm, 100% water vapor.

Tables (2)

Tables Icon

Table I Resolution for Slit Widths Used

Tables Icon

Table II Absorption Coefficients of H2O

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Q = φ ( ω , θ ) R ° ( ω , T ) exp ( - k d s ) k cos θ d v d Ω ( θ ) d ω ,
- [ d / ( d l ) ] ln ( t ¯ ) = constant .
= ( 1 - l ) = 1 - exp { - [ k ¯ l / ( 1 + 1 π k ¯ l a ) 1 2 ] } .
- [ d / ( d l ) ] ( ln t ¯ ) l - 1 2
= 1 - exp { - f [ k ¯ ( ω ) l , a ( ω ) ] } ,
= 1 - exp { - i f i [ k i ( ω ) l , a i ( ω ) ] } .
w ˙ = 0.668 × A K E Y ( p Δ p ) 1 2 ,
N ° ( ω , T ) = N ( ω , T ) / ( ω , T ) .
= [ ρ ( B ) + ρ ( F ) - ρ ( B + F ) ] / ρ ( B )
= 1 - [ ρ ( B - F ) / ρ ( B ) ] .
σ ω = ± { 1 n n [ ( calc - exp ) 100 calc ] 2 } 1 2
= 1 - exp ( - W / d )
W / d = k u ( 1 + k u / 4 a ) - 1 2 ,
[ u / ( W / d ) ] 2 = ( 1 / k 2 ) + ( u / 4 a k ) ,
Linear region :             [ u / ( W / d ) ] 2 1 / k 2 . Square - root region :             [ u / ( W / d ) ] 2 1 / 4 a k .
a = γ / d ,
γ = i [ ( γ j ) STP p j ( 273 / T ) n j ] + ( γ H 2 O * ) STP p H 2 O ( 273 / T ) n * ,
γ = p T { c [ 0.44 ( 273 / T ) + 0.09 ( 273 / T ) 1 2 ] + ( 1 - c ) 0.04 ( 273 / T ) 1 2 } ,
c = - 0.1002 + 0.2802 × 10 - 3 T 1 - 0.1089 × 10 - 6 T 2 + 0.0291 × 10 - 9 T 3 .
1150 - 2200 cm - 1 4750 - 5700 cm - 1 3200 - 4100 cm - 1 6700 - 7500 cm - 1
T = ( σ T 4 ) - 1 0 ( ω , T ) R ° ( ω , T ) d ω ,

Metrics