Abstract

The refractive index of silicon was measured at room temperature over the range 1.1–2.0 μ by autocollimation in an ~12° wedge. The image was observed by sweeping it across a slit in front of a lead sulfide cell whose output was displayed vertically on an oscilloscope while the sweep frequency was displayed horizontally. The problems of measuring the refractive index of silicon are discussed, and it is concluded that the refractive index is not known absolutely to better than the third decimal.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Briggs, Phys. Rev. 77, 287 (1950).
    [CrossRef]
  2. C. D. Salzberg, J. J. Villa, J. Opt. Soc. Amer. 47, 244 (1957).
    [CrossRef]
  3. E. D. McAlister, J. J. Villa, C. D. Salzberg, J. Opt. Soc. Amer. 46, 485 (1956).
    [CrossRef]
  4. M. Cardona, W. Paul, H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).
    [CrossRef]
  5. F. Lukeš, Czech. J. Phys. B10, 317 (1960).
    [CrossRef]
  6. F. Lukeš, J. Phys. Chem. Solids 11, 342 (1959).
    [CrossRef]
  7. F. S. Tomkins, M. Fred, J. Opt. Soc. Amer. 41, 641 (1951).
    [CrossRef]
  8. In a subsequent investigation [W. Primak, Appl. Opt. 6, 1917 (1967)] the phase precision achieved by this method was found to be poorer than 0.01 cycle. He gives a technique at least an order of magnitude better.
    [CrossRef] [PubMed]
  9. Subsequent to this investigation Warren Buck in our laboratory studied germanium and found that the absorption below the edge varied among specimens. It may be inferred that this occurs in silicon also. However, it is not expected that the refractive index would be affected to the extent of the variation mentioned here, but this remains to be investigated

1967 (1)

1960 (1)

F. Lukeš, Czech. J. Phys. B10, 317 (1960).
[CrossRef]

1959 (2)

F. Lukeš, J. Phys. Chem. Solids 11, 342 (1959).
[CrossRef]

M. Cardona, W. Paul, H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

1957 (1)

C. D. Salzberg, J. J. Villa, J. Opt. Soc. Amer. 47, 244 (1957).
[CrossRef]

1956 (1)

E. D. McAlister, J. J. Villa, C. D. Salzberg, J. Opt. Soc. Amer. 46, 485 (1956).
[CrossRef]

1951 (1)

F. S. Tomkins, M. Fred, J. Opt. Soc. Amer. 41, 641 (1951).
[CrossRef]

1950 (1)

H. B. Briggs, Phys. Rev. 77, 287 (1950).
[CrossRef]

Briggs, H. B.

H. B. Briggs, Phys. Rev. 77, 287 (1950).
[CrossRef]

Brooks, H.

M. Cardona, W. Paul, H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

Cardona, M.

M. Cardona, W. Paul, H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

Fred, M.

F. S. Tomkins, M. Fred, J. Opt. Soc. Amer. 41, 641 (1951).
[CrossRef]

Lukeš, F.

F. Lukeš, Czech. J. Phys. B10, 317 (1960).
[CrossRef]

F. Lukeš, J. Phys. Chem. Solids 11, 342 (1959).
[CrossRef]

McAlister, E. D.

E. D. McAlister, J. J. Villa, C. D. Salzberg, J. Opt. Soc. Amer. 46, 485 (1956).
[CrossRef]

Paul, W.

M. Cardona, W. Paul, H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

Primak, W.

Salzberg, C. D.

C. D. Salzberg, J. J. Villa, J. Opt. Soc. Amer. 47, 244 (1957).
[CrossRef]

E. D. McAlister, J. J. Villa, C. D. Salzberg, J. Opt. Soc. Amer. 46, 485 (1956).
[CrossRef]

Tomkins, F. S.

F. S. Tomkins, M. Fred, J. Opt. Soc. Amer. 41, 641 (1951).
[CrossRef]

Villa, J. J.

C. D. Salzberg, J. J. Villa, J. Opt. Soc. Amer. 47, 244 (1957).
[CrossRef]

E. D. McAlister, J. J. Villa, C. D. Salzberg, J. Opt. Soc. Amer. 46, 485 (1956).
[CrossRef]

Appl. Opt. (1)

Czech. J. Phys. (1)

F. Lukeš, Czech. J. Phys. B10, 317 (1960).
[CrossRef]

J. Opt. Soc. Amer. (3)

C. D. Salzberg, J. J. Villa, J. Opt. Soc. Amer. 47, 244 (1957).
[CrossRef]

E. D. McAlister, J. J. Villa, C. D. Salzberg, J. Opt. Soc. Amer. 46, 485 (1956).
[CrossRef]

F. S. Tomkins, M. Fred, J. Opt. Soc. Amer. 41, 641 (1951).
[CrossRef]

J. Phys. Chem. Solids (2)

M. Cardona, W. Paul, H. Brooks, J. Phys. Chem. Solids 8, 204 (1959).
[CrossRef]

F. Lukeš, J. Phys. Chem. Solids 11, 342 (1959).
[CrossRef]

Phys. Rev. (1)

H. B. Briggs, Phys. Rev. 77, 287 (1950).
[CrossRef]

Other (1)

Subsequent to this investigation Warren Buck in our laboratory studied germanium and found that the absorption below the edge varied among specimens. It may be inferred that this occurs in silicon also. However, it is not expected that the refractive index would be affected to the extent of the variation mentioned here, but this remains to be investigated

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Diagram of the internal and external reflections in the wedge, showing the nomenclature employed.

Fig. 2
Fig. 2

Refractive index of silicon at 24°C as a function of reciprocal wavelength squared: small cross, Set II; large cross, Set III; large X, Set IV; small circle, Set V. Literature values for comparison: octagon, Briggs1; diamond, Salzberg and Villa2 (26°C); triangle, Lukeš5 (300 K).

Tables (1)

Tables Icon

Table I Determination of Refractive Index of a Silicon Wedge by Autocollimation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = sin α / sin 1 2 W , Δ N = ( cos α / sin 1 2 W ) Δ α + ( 1 2 sin α cos 1 2 W / sin 2 1 2 W ) Δ W ( 0.8 / sin 1 2 W ) ( Δ α + 0.6 N Δ W ) ;
N = sin α / sin W , Δ N = ( cos α / sin W ) Δ α + ( sin α cos W / sin 2 W ) Δ W ( 0.8 / sin W ) ( Δ α + 1.2 N Δ W ) ;

Metrics