Abstract

Since the discovery that Al overcoated with MgF2 or LiF produces high reflectances to wavelengths as short as 1150 Å and 1000 Å, respectively, these coatings have been used extensively in vacuum ultraviolet instruments in the wavelength region where their reflectance is high. If the instrument is intended to cover wavelengths shorter than the two given above, usually either Pt or Ir is used, with a loss of speed at the longer wavelengths. This paper presents reflectance data showing that fluoride-overcoated Al can be useful to wavelengths as short as 500 Å. Measurements were made from 1600 Å to about 300 Å at normal, 35°, and 85° angles of incidence, angles used in normal, Seya, and grazing incidence spectrometers, respectively. These measurements show that from the boundary of the high reflectance region to 500 Å, the reflectance at normal and 35° depends on the thickness of the fluoride coating and can be as high as 24% at 800 Å for a MgF2 thickness of 150 Å. For shorter wavelengths, the reflectance shows a decreasing thickness dependence and at 304 Å is very low—about 1%. At grazing incidence, the reflectance shows some thickness dependence from 1500 Å to about 1000 Å, but toward shorter wavelengths the dependence disappears and the reflectance increases slowly to about 80% at 500 Å. In addition to the reflectance measurements, polarization effects are discussed.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, R. Tousey, J. Opt. Soc. Amer. 49, 593 (1959).
    [CrossRef]
  2. L. R. Canfield, G. Hass, J. E. Waylonis, Appl. Opt. 5, 45 (1966).
    [CrossRef] [PubMed]
  3. D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
    [CrossRef]
  4. J. T. Cox, G. Hass, J. E. Waylonis, Appl. Opt. 7, 1535 (1968).
    [CrossRef] [PubMed]
  5. P. H. Berning, G. Hass, R. P. Madden, J. Opt. Soc. Amer. 50, 586 (1960).
    [CrossRef]
  6. M. Seya, Sci. Light 2, 8 (1952); T. Namioka, Sci. Light 3, 15 (1954).
  7. A. P. Bradford, G. Hass, J. F. Osantowski, A. R. Toft, Appl. Opt. 8, 1183 (1969).
    [CrossRef] [PubMed]
  8. W. R. Hunter, in Proc. 10th Colloquium Spectroscopicum Internationale (Spartan Books, Washington, D.C., 1963), p. 247.
  9. W. R. Hunter, unpublished data.
  10. W. C. Walker, Appl. Opt. 3, 1457 (1964).
    [CrossRef]
  11. D. A. Patterson, W. H. Vaughan, J. Opt. Soc. Amer. 53, 851 (1963).
    [CrossRef]
  12. D. M. Roessler, W. C. Walker, J. Phys. Chem. Solids 28, 1507 (1967).
    [CrossRef]
  13. G. F. Jacobus, R. P. Madden, L. R. Canfield, J. Opt. Soc. Amer. 53, 1084 (1963).
    [CrossRef]
  14. G. Hass, G. F. Jacobus, W. R. Hunter, J. Opt. Soc. Amer. 57, 758 (1967).
    [CrossRef]

1969 (1)

1968 (1)

1967 (2)

D. M. Roessler, W. C. Walker, J. Phys. Chem. Solids 28, 1507 (1967).
[CrossRef]

G. Hass, G. F. Jacobus, W. R. Hunter, J. Opt. Soc. Amer. 57, 758 (1967).
[CrossRef]

1966 (1)

1964 (1)

1963 (2)

D. A. Patterson, W. H. Vaughan, J. Opt. Soc. Amer. 53, 851 (1963).
[CrossRef]

G. F. Jacobus, R. P. Madden, L. R. Canfield, J. Opt. Soc. Amer. 53, 1084 (1963).
[CrossRef]

1961 (1)

D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
[CrossRef]

1960 (1)

P. H. Berning, G. Hass, R. P. Madden, J. Opt. Soc. Amer. 50, 586 (1960).
[CrossRef]

1959 (1)

G. Hass, R. Tousey, J. Opt. Soc. Amer. 49, 593 (1959).
[CrossRef]

1952 (1)

M. Seya, Sci. Light 2, 8 (1952); T. Namioka, Sci. Light 3, 15 (1954).

Angel, D. W.

D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
[CrossRef]

Berning, P. H.

P. H. Berning, G. Hass, R. P. Madden, J. Opt. Soc. Amer. 50, 586 (1960).
[CrossRef]

Bradford, A. P.

Canfield, L. R.

L. R. Canfield, G. Hass, J. E. Waylonis, Appl. Opt. 5, 45 (1966).
[CrossRef] [PubMed]

G. F. Jacobus, R. P. Madden, L. R. Canfield, J. Opt. Soc. Amer. 53, 1084 (1963).
[CrossRef]

Cox, J. T.

Hass, G.

A. P. Bradford, G. Hass, J. F. Osantowski, A. R. Toft, Appl. Opt. 8, 1183 (1969).
[CrossRef] [PubMed]

J. T. Cox, G. Hass, J. E. Waylonis, Appl. Opt. 7, 1535 (1968).
[CrossRef] [PubMed]

G. Hass, G. F. Jacobus, W. R. Hunter, J. Opt. Soc. Amer. 57, 758 (1967).
[CrossRef]

L. R. Canfield, G. Hass, J. E. Waylonis, Appl. Opt. 5, 45 (1966).
[CrossRef] [PubMed]

D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
[CrossRef]

P. H. Berning, G. Hass, R. P. Madden, J. Opt. Soc. Amer. 50, 586 (1960).
[CrossRef]

G. Hass, R. Tousey, J. Opt. Soc. Amer. 49, 593 (1959).
[CrossRef]

Hunter, W. R.

G. Hass, G. F. Jacobus, W. R. Hunter, J. Opt. Soc. Amer. 57, 758 (1967).
[CrossRef]

D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
[CrossRef]

W. R. Hunter, in Proc. 10th Colloquium Spectroscopicum Internationale (Spartan Books, Washington, D.C., 1963), p. 247.

W. R. Hunter, unpublished data.

Jacobus, G. F.

G. Hass, G. F. Jacobus, W. R. Hunter, J. Opt. Soc. Amer. 57, 758 (1967).
[CrossRef]

G. F. Jacobus, R. P. Madden, L. R. Canfield, J. Opt. Soc. Amer. 53, 1084 (1963).
[CrossRef]

Madden, R. P.

G. F. Jacobus, R. P. Madden, L. R. Canfield, J. Opt. Soc. Amer. 53, 1084 (1963).
[CrossRef]

P. H. Berning, G. Hass, R. P. Madden, J. Opt. Soc. Amer. 50, 586 (1960).
[CrossRef]

Osantowski, J. F.

Patterson, D. A.

D. A. Patterson, W. H. Vaughan, J. Opt. Soc. Amer. 53, 851 (1963).
[CrossRef]

Roessler, D. M.

D. M. Roessler, W. C. Walker, J. Phys. Chem. Solids 28, 1507 (1967).
[CrossRef]

Seya, M.

M. Seya, Sci. Light 2, 8 (1952); T. Namioka, Sci. Light 3, 15 (1954).

Toft, A. R.

Tousey, R.

D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
[CrossRef]

G. Hass, R. Tousey, J. Opt. Soc. Amer. 49, 593 (1959).
[CrossRef]

Vaughan, W. H.

D. A. Patterson, W. H. Vaughan, J. Opt. Soc. Amer. 53, 851 (1963).
[CrossRef]

Walker, W. C.

D. M. Roessler, W. C. Walker, J. Phys. Chem. Solids 28, 1507 (1967).
[CrossRef]

W. C. Walker, Appl. Opt. 3, 1457 (1964).
[CrossRef]

Waylonis, J. E.

Appl. Opt. (4)

J. Opt. Soc. Amer. (6)

D. A. Patterson, W. H. Vaughan, J. Opt. Soc. Amer. 53, 851 (1963).
[CrossRef]

P. H. Berning, G. Hass, R. P. Madden, J. Opt. Soc. Amer. 50, 586 (1960).
[CrossRef]

D. W. Angel, W. R. Hunter, R. Tousey, G. Hass, J. Opt. Soc. Amer. 51, 913 (1961).
[CrossRef]

G. F. Jacobus, R. P. Madden, L. R. Canfield, J. Opt. Soc. Amer. 53, 1084 (1963).
[CrossRef]

G. Hass, G. F. Jacobus, W. R. Hunter, J. Opt. Soc. Amer. 57, 758 (1967).
[CrossRef]

G. Hass, R. Tousey, J. Opt. Soc. Amer. 49, 593 (1959).
[CrossRef]

J. Phys. Chem. Solids (1)

D. M. Roessler, W. C. Walker, J. Phys. Chem. Solids 28, 1507 (1967).
[CrossRef]

Sci. Light (1)

M. Seya, Sci. Light 2, 8 (1952); T. Namioka, Sci. Light 3, 15 (1954).

Other (2)

W. R. Hunter, in Proc. 10th Colloquium Spectroscopicum Internationale (Spartan Books, Washington, D.C., 1963), p. 247.

W. R. Hunter, unpublished data.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Measured reflectance of an Al + MgF2 mirror from 300 Å to 1500 Å. The MgF2 thickness is 150 Å.

Fig. 2
Fig. 2

Measured reflectance of an Al + MgF2 mirror from 300 Å to 1600 Å. The MgF2 thickness is 250 Å.

Fig. 3
Fig. 3

Measured reflectance of an Al + MgF2 mirror from 310 Å to 1600 Å. The MgF2 thickness is 420 Å.

Fig. 4
Fig. 4

Measured reflectance of an Al + MgF2 mirror from 310 Å to 1600 Å. The MgF2 thickness is 620 Å.

Fig. 5
Fig. 5

Calculated reflectance vs thickness of Al + MgF2 for three angles of incidence. The optical constants used are: nAl = 0.0586, kAl = 1.05, nMgF2 = 1.73, and kMgF2 = 0.044.

Fig. 6
Fig. 6

Calculated reflectance vs angle of incidence of Al + MgF2 for various thicknesses of MgF2. The optical constants used in the calculation were the same as for Fig. 5.

Fig. 7
Fig. 7

Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 140 Å.

Fig. 8
Fig. 8

Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 250 Å.

Fig. 9
Fig. 9

Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 360 Å.

Fig. 10
Fig. 10

Measured reflectance of an Al + LiF mirror from 300 Å to 1600 Å. The LiF thickness is 500 Å.

Fig. 11
Fig. 11

Measured reflectance of an aged Al mirror from 300 Å to 1600 Å.

Fig. 12
Fig. 12

Measured reflectance of a glass surface from 300 Å to 1600 Å.

Metrics