Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Haines, B. P. Hildebrand, Appl. Opt. 5, 595 (1966).
    [CrossRef] [PubMed]
  2. A. E. Ennos, J.S.I. (J. Physics E) Ser. 2, 1, 731 (1968).
    [CrossRef]
  3. J. E. Sollid, Appl. Opt. 8, 1587 (1969).
    [CrossRef] [PubMed]
  4. P. Boone, R. Verbiest, Opt. Acta 16, 555 (1969).
    [CrossRef]
  5. J. Motycka, Appl. Opt. 8, 1455 (1969).
    [CrossRef]

1969 (3)

P. Boone, R. Verbiest, Opt. Acta 16, 555 (1969).
[CrossRef]

J. Motycka, Appl. Opt. 8, 1455 (1969).
[CrossRef]

J. E. Sollid, Appl. Opt. 8, 1587 (1969).
[CrossRef] [PubMed]

1968 (1)

A. E. Ennos, J.S.I. (J. Physics E) Ser. 2, 1, 731 (1968).
[CrossRef]

1966 (1)

Boone, P.

P. Boone, R. Verbiest, Opt. Acta 16, 555 (1969).
[CrossRef]

Ennos, A. E.

A. E. Ennos, J.S.I. (J. Physics E) Ser. 2, 1, 731 (1968).
[CrossRef]

Haines, K. A.

Hildebrand, B. P.

Motycka, J.

J. Motycka, Appl. Opt. 8, 1455 (1969).
[CrossRef]

Sollid, J. E.

Verbiest, R.

P. Boone, R. Verbiest, Opt. Acta 16, 555 (1969).
[CrossRef]

Appl. Opt. (3)

J.S.I. (J. Physics E) Ser. 2 (1)

A. E. Ennos, J.S.I. (J. Physics E) Ser. 2, 1, 731 (1968).
[CrossRef]

Opt. Acta (1)

P. Boone, R. Verbiest, Opt. Acta 16, 555 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reconstructed image, showing rubber strip with stationary support on the right and the moving support on the left.

Fig. 2
Fig. 2

Measured values of the displacement of several points on the stretched rubber as compared to the approximation that the displacement of points on the strip is a linear function of location.

Fig. 3
Fig. 3

(a) Brass with fringes caused by a rotation. (b) Brass having been both rotated and corroded between exposures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x 0 = λ D x R 3 ,             y 0 = λ D y R 3 .

Metrics