Abstract

The compensation of Fabry-Perot plate surface defects by the deposition of a dielectric film of appropriate thickness profile is discussed. The method of depositing a film over the reflecting coating on an etalon plate is often unsatisfactory, because the optical thickness of the etalon is insensitive to change in thickness of the dielectric film when the reflectance is a maximum. A dielectric film deposited before a reflecting coating produces a change in the optical thickness of the etalon equal to the thickness of the film and barely changes the reflectance. A method for depositing dielectric layers of suitable thickness profile is described. A slotted mask, prepared from an interferogram recording the surface defects, is used to produce an appropriate attenuation of evaporated dielectric material.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Strong, E. Gaviola, J. Opt. Soc. Amer. 26, 153 (1936).
    [CrossRef]
  2. E. Pelletier, R. Chabbal, P. Giacomo, J. Phys. 25, 275 (1964).
    [CrossRef]
  3. E. Pelletier, P. Giacomo, Rev. Phys. Appl. 2, 52 (1967).
    [CrossRef]
  4. J. B. Schroeder, S. Bashkin, J. F. Nester, Appl. Opt. 5, 1031 (1966).
    [CrossRef] [PubMed]
  5. G. Koppelmann, K. Schreck, Optik 29, 549 (1969).
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).
  7. F. Abelès, Ann. Phys. (Paris) 5, 596, 706 (1950).
  8. L. G. Schulz, J. Opt. Soc. Amer. 44, 357, 362 (1954).
    [CrossRef]
  9. R. Chabbal, J. Rech. Centre Nat. Rech. Sci. Lab. Bellevue (Paris) 24, 138 (1953).
  10. I. J. Hodgkinson, Appl. Opt. 8, 1373 (1969).
    [CrossRef] [PubMed]
  11. R. V. Jones, J. Sci. Instrum. 28, 28 (1951).
  12. I. J. Hodgkinson, J. Sci. Instrum., Ser. 2, 3, 300, 341 (1970).
    [CrossRef]
  13. J. V. Ramsay, E. G. V. Mugridge, Appl. Opt. 1, 539 (1962).

1970 (1)

I. J. Hodgkinson, J. Sci. Instrum., Ser. 2, 3, 300, 341 (1970).
[CrossRef]

1969 (2)

G. Koppelmann, K. Schreck, Optik 29, 549 (1969).

I. J. Hodgkinson, Appl. Opt. 8, 1373 (1969).
[CrossRef] [PubMed]

1967 (1)

E. Pelletier, P. Giacomo, Rev. Phys. Appl. 2, 52 (1967).
[CrossRef]

1966 (1)

1964 (1)

E. Pelletier, R. Chabbal, P. Giacomo, J. Phys. 25, 275 (1964).
[CrossRef]

1962 (1)

1954 (1)

L. G. Schulz, J. Opt. Soc. Amer. 44, 357, 362 (1954).
[CrossRef]

1953 (1)

R. Chabbal, J. Rech. Centre Nat. Rech. Sci. Lab. Bellevue (Paris) 24, 138 (1953).

1951 (1)

R. V. Jones, J. Sci. Instrum. 28, 28 (1951).

1950 (1)

F. Abelès, Ann. Phys. (Paris) 5, 596, 706 (1950).

1936 (1)

J. Strong, E. Gaviola, J. Opt. Soc. Amer. 26, 153 (1936).
[CrossRef]

Abelès, F.

F. Abelès, Ann. Phys. (Paris) 5, 596, 706 (1950).

Bashkin, S.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Chabbal, R.

E. Pelletier, R. Chabbal, P. Giacomo, J. Phys. 25, 275 (1964).
[CrossRef]

R. Chabbal, J. Rech. Centre Nat. Rech. Sci. Lab. Bellevue (Paris) 24, 138 (1953).

Gaviola, E.

J. Strong, E. Gaviola, J. Opt. Soc. Amer. 26, 153 (1936).
[CrossRef]

Giacomo, P.

E. Pelletier, P. Giacomo, Rev. Phys. Appl. 2, 52 (1967).
[CrossRef]

E. Pelletier, R. Chabbal, P. Giacomo, J. Phys. 25, 275 (1964).
[CrossRef]

Hodgkinson, I. J.

I. J. Hodgkinson, J. Sci. Instrum., Ser. 2, 3, 300, 341 (1970).
[CrossRef]

I. J. Hodgkinson, Appl. Opt. 8, 1373 (1969).
[CrossRef] [PubMed]

Jones, R. V.

R. V. Jones, J. Sci. Instrum. 28, 28 (1951).

Koppelmann, G.

G. Koppelmann, K. Schreck, Optik 29, 549 (1969).

Mugridge, E. G. V.

Nester, J. F.

Pelletier, E.

E. Pelletier, P. Giacomo, Rev. Phys. Appl. 2, 52 (1967).
[CrossRef]

E. Pelletier, R. Chabbal, P. Giacomo, J. Phys. 25, 275 (1964).
[CrossRef]

Ramsay, J. V.

Schreck, K.

G. Koppelmann, K. Schreck, Optik 29, 549 (1969).

Schroeder, J. B.

Schulz, L. G.

L. G. Schulz, J. Opt. Soc. Amer. 44, 357, 362 (1954).
[CrossRef]

Strong, J.

J. Strong, E. Gaviola, J. Opt. Soc. Amer. 26, 153 (1936).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Ann. Phys. (Paris) (1)

F. Abelès, Ann. Phys. (Paris) 5, 596, 706 (1950).

Appl. Opt. (3)

J. Opt. Soc. Amer. (2)

L. G. Schulz, J. Opt. Soc. Amer. 44, 357, 362 (1954).
[CrossRef]

J. Strong, E. Gaviola, J. Opt. Soc. Amer. 26, 153 (1936).
[CrossRef]

J. Phys. (1)

E. Pelletier, R. Chabbal, P. Giacomo, J. Phys. 25, 275 (1964).
[CrossRef]

J. Rech. Centre Nat. Rech. Sci. Lab. Bellevue (Paris) (1)

R. Chabbal, J. Rech. Centre Nat. Rech. Sci. Lab. Bellevue (Paris) 24, 138 (1953).

J. Sci. Instrum. (1)

R. V. Jones, J. Sci. Instrum. 28, 28 (1951).

J. Sci. Instrum., Ser. 2 (1)

I. J. Hodgkinson, J. Sci. Instrum., Ser. 2, 3, 300, 341 (1970).
[CrossRef]

Optik (1)

G. Koppelmann, K. Schreck, Optik 29, 549 (1969).

Rev. Phys. Appl. (1)

E. Pelletier, P. Giacomo, Rev. Phys. Appl. 2, 52 (1967).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A silver reflecting film overcoated with a dielectric film.

Fig. 2
Fig. 2

Combination of a silver reflecting film of thickness λgreen/10 and a dielectric film. The reflecting finesse NR and the transmission factor τA depend on the thickness h of the dielectric layer, and on the order of deposition. Films of thickness h on both plates of a symmetric etalon produce a total change in optical thickness of 2Δp. c, cryolite; g, glass; s, silver; and z, zinc sulfide.

Fig. 3
Fig. 3

The effect of altering the thickness of the first (and the last) deposited layer of a dielectric multilayer reflecting coating. The reflecting finesse NR and the change Δp in the position of the effective reflecting surface depend on the thickness h of the first (and the last) deposited layer.

Fig. 4
Fig. 4

Inverse transmittance, Ts−1, of the photographic lined contact screen as a function of distance measured across the lines. The screen is used to produce a line negative from an interferogram.

Fig. 5
Fig. 5

Parallel double leaf spring system for moving a mask at a constant speed during uniform vacuum evaporation of dielectric material. The mask M is situated close to the Fabry-Perot plate P, between the evaporation filament and the plate. The mask is driven by an external synchronous motor, through a rotary feedthrough, eccentric E, and push-rod R.

Fig. 6
Fig. 6

Test of the over-all performance of the evaporation system. An approximately linear relationship exists between the transmittance of an interferogram and the displacement of multiple-beam Fizeau fringes transmitted by an etalon with a phase compensating layer on one plate.

Fig. 7
Fig. 7

Interferogram showing initial surface defects of 3.2-cm Fabry-Perot plates. Scratches appear as light lines.

Fig. 8
Fig. 8

Surface defects distributions of 3.2-cm Fabry-Perot plates, before compensation (solid line) and after compensation with a film of cryolite applied directly to one plate (broken lines).

Fig. 9
Fig. 9

Copper mask produced from the interferogram reproduced in Fig. 7.

Fig. 10
Fig. 10

Interferogram showing residual surface defects of 3.2-cm Fabry-Perot plates. Depressions appear as light areas.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p = z + ( ρ + ρ ) λ / 4 π ,
Δ p = [ ρ ( h ) - ρ ( o ) ] ( λ / 4 π ) - h .
T f = 1 , E < E 0 , T f = 0 , E E 0 ,
T i = a z + b ,
T s - 1 = c x + d ;
c x + d = ( t / E 0 ) ( a z + b ) .

Metrics