Abstract

It has been demonstrated that surface waves propagating on one mirror of an interferometer form an optical diffraction grating. Experimentally confirmed analyses of an interferometer with 95.5% reflectivity mirrors now indicate that a surface wave power density of 0.028 mW/mm · MHz is required to diffract 1% of transmitted light into the first order beam. This power can be diminished by a factor of more than 20 by increasing the mirror reflectivity to 99%.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Hunsinger, D. Holshouser, Appl. Phys. Lett. 16, 272 (1970).
    [CrossRef]
  2. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).
  3. E. P. Ippen, Proc. IEEE 55, 248 (1967).
    [CrossRef]
  4. R. M. White, F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).
    [CrossRef]
  5. E. P. Ippen, “Diffraction of Light by Acoustic Surface Waves,” Ph.D. Dissertation, University of California, Berkeley, 1967.
  6. F. Cho, B. Hunsinger, R. Lawson, Appl. Phys. Lett. 16, 441 (1970).
    [CrossRef]
  7. E. G. H. Lean, C. C. Tseng, IEEE Trans. Sonics Ultrasonics SU17, 53 (1970).
  8. J. H. Collins, “Scattering and Transfer Matrix Analysis for Acoustic Surface Wave Transducers,” ML Rep. No. 1692, Contr. F30502-68-C-0074, Oct.1968.

1970 (3)

B. J. Hunsinger, D. Holshouser, Appl. Phys. Lett. 16, 272 (1970).
[CrossRef]

F. Cho, B. Hunsinger, R. Lawson, Appl. Phys. Lett. 16, 441 (1970).
[CrossRef]

E. G. H. Lean, C. C. Tseng, IEEE Trans. Sonics Ultrasonics SU17, 53 (1970).

1967 (1)

E. P. Ippen, Proc. IEEE 55, 248 (1967).
[CrossRef]

1965 (1)

R. M. White, F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Cho, F.

F. Cho, B. Hunsinger, R. Lawson, Appl. Phys. Lett. 16, 441 (1970).
[CrossRef]

Collins, J. H.

J. H. Collins, “Scattering and Transfer Matrix Analysis for Acoustic Surface Wave Transducers,” ML Rep. No. 1692, Contr. F30502-68-C-0074, Oct.1968.

Holshouser, D.

B. J. Hunsinger, D. Holshouser, Appl. Phys. Lett. 16, 272 (1970).
[CrossRef]

Hunsinger, B.

F. Cho, B. Hunsinger, R. Lawson, Appl. Phys. Lett. 16, 441 (1970).
[CrossRef]

Hunsinger, B. J.

B. J. Hunsinger, D. Holshouser, Appl. Phys. Lett. 16, 272 (1970).
[CrossRef]

Ippen, E. P.

E. P. Ippen, Proc. IEEE 55, 248 (1967).
[CrossRef]

E. P. Ippen, “Diffraction of Light by Acoustic Surface Waves,” Ph.D. Dissertation, University of California, Berkeley, 1967.

Lawson, R.

F. Cho, B. Hunsinger, R. Lawson, Appl. Phys. Lett. 16, 441 (1970).
[CrossRef]

Lean, E. G. H.

E. G. H. Lean, C. C. Tseng, IEEE Trans. Sonics Ultrasonics SU17, 53 (1970).

Tseng, C. C.

E. G. H. Lean, C. C. Tseng, IEEE Trans. Sonics Ultrasonics SU17, 53 (1970).

Voltmer, F. W.

R. M. White, F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).
[CrossRef]

White, R. M.

R. M. White, F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Appl. Phys. Lett. (3)

B. J. Hunsinger, D. Holshouser, Appl. Phys. Lett. 16, 272 (1970).
[CrossRef]

R. M. White, F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).
[CrossRef]

F. Cho, B. Hunsinger, R. Lawson, Appl. Phys. Lett. 16, 441 (1970).
[CrossRef]

IEEE Trans. Sonics Ultrasonics (1)

E. G. H. Lean, C. C. Tseng, IEEE Trans. Sonics Ultrasonics SU17, 53 (1970).

Proc. IEEE (1)

E. P. Ippen, Proc. IEEE 55, 248 (1967).
[CrossRef]

Other (3)

J. H. Collins, “Scattering and Transfer Matrix Analysis for Acoustic Surface Wave Transducers,” ML Rep. No. 1692, Contr. F30502-68-C-0074, Oct.1968.

E. P. Ippen, “Diffraction of Light by Acoustic Surface Waves,” Ph.D. Dissertation, University of California, Berkeley, 1967.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Surface interference modulation implementation.

Fig. 2
Fig. 2

(a) Zero order intensity vs surface wave amplitude. (b) First order modulation depth vs surface wave amplitude. (c) Second order modulation depth vs surface wave amplitude.

Fig. 3
Fig. 3

Coupled surface wave transducer.

Fig. 4
Fig. 4

Modulation PWR coefficient (Csw) vs reflectivity.

Fig. 5
Fig. 5

SWIM experimental arrangement.

Fig. 6
Fig. 6

Measured modulation depth vs surface wave amplitude.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

h ( x ) = ( n λ L / 2 ) + g ( x ) + B ,
g ( x ) = A s sin K s x ,
h ( x ) = ( n λ L / 2 ) + B + A s sin K s x .
E t ( x ) = E 0 ( x ) ( 1 - R 1 ) / { 1 - R 1 exp [ i ϕ ( x ) ] } ,
ϕ ( x ) = ( 4 π λ L n λ L 2 + B + A s sin K s x ) .
s ( x ) = { 1 1 + [ 4 R 1 / ( 1 - R 1 ) ] sin [ 2 ϕ ( x ) / 2 ] } 1 / 2 exp [ i ( x ) ] ,
( x ) = tan - 1 R 1 sin ϕ ( x ) 1 - R 1 cos ϕ ( x ) .
s ( x ) = 1 - { [ 2 R 1 A s 2 k 2 sin 2 K s x ( 1 - R 1 ) 2 ] } exp [ i ( x ) ] ,
( x ) = ( 2 R 1 / 1 - R 1 ) k A s sin K s x .
0 = ( 2 R 1 / 1 - R 1 ) k A s ,
t 0 = ( 1 / 2 R 1 ) 0 2 ,
s ( x ) = ( 1 - t 0 + t 0 cos 2 K s x ) exp ( i 0 sin K s x ) .
I ( K ) = [ 1 - ( 1 + R 1 ) / 2 R 1 0 2 ] 2 δ ( K ) + ( 0 2 / 4 ) [ δ ( K - K s ) + δ ( K + K s ) ] + [ 0 4 ( 1 + R 1 ) 2 / 256 R 1 ] [ δ ( K - 2 K s ) + δ ( K + 2 K s ) ] + , δ ( K ) is the Dirac delta function .
s ( x ) = j = - α j exp ( i K j x ) ,
α j = K 2 π - π / K + π / K s ( x ) exp ( - i K j x ) d x .
α j = K ( 1 - R 1 ) 2 π - π / K + π / K exp ( - i K j x ) d x 1 - R 1 exp { k [ ( n λ L / 2 ) + g ( x ) + B ] } .
P A = K 1 A s 2 f s W mm - 1 , where K 1 = 3.2 × 10 2 J mm - 3 .
P m = C m p · f s · W · D 1 ,

Metrics