Abstract

An optical system producing an annular cone of radiation from a point source using a low profile front lens is shown to have application as a beacon for high speed vehicles. The system comprises a high pressure short arc light source with axial electrodes and integral collector, a conical reflector, and a divergent meniscus lens that has low protrusion over the surface of the vehicle. The system has minimal drag, and the radiation is distributed in directions close to the plane perpendicular to the optical axis. The influences of various parameters such as lens camber, lens aperture, source size, collector shape, collection efficiency, and beam divergence are discussed. A prototype was built at Eimac Division of Varian using a xenon short arc lamp with metal ceramic structure and integral collector.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Dalton, Appl. Opt. 4, 628 (1965).
    [CrossRef]
  2. J. Richter, Opt. Spectra 2 (3), 58 (1968).
  3. R. R. Standel, IRIS 13, 23 (1969).
  4. F. Benford, Gen. Elec. Rev. 26, 231 (1923).
  5. L. E. W. van Albada, Graphical Design of Optical Systems (Pitman, New York, 1955).
  6. H. P. Bruegemann, Conic Mirrors (Focal Press, New York, 1968), pp. 21–29.
  7. H. Anders, Thin Films in Optics (Focal Press, New York, 1967), p. 83.
  8. W. D. Chesterman, W. S. Styles, “The Visibility of Targets in a Naval Searchlight Beam,” in Symposium on Searchlights (Illuminating Engineering Society, London, 1948), p. 82.
  9. Reference 4, p. 234.

1969 (1)

R. R. Standel, IRIS 13, 23 (1969).

1968 (1)

J. Richter, Opt. Spectra 2 (3), 58 (1968).

1965 (1)

1923 (1)

F. Benford, Gen. Elec. Rev. 26, 231 (1923).

Anders, H.

H. Anders, Thin Films in Optics (Focal Press, New York, 1967), p. 83.

Benford, F.

F. Benford, Gen. Elec. Rev. 26, 231 (1923).

Bruegemann, H. P.

H. P. Bruegemann, Conic Mirrors (Focal Press, New York, 1968), pp. 21–29.

Chesterman, W. D.

W. D. Chesterman, W. S. Styles, “The Visibility of Targets in a Naval Searchlight Beam,” in Symposium on Searchlights (Illuminating Engineering Society, London, 1948), p. 82.

Dalton, M.

Richter, J.

J. Richter, Opt. Spectra 2 (3), 58 (1968).

Standel, R. R.

R. R. Standel, IRIS 13, 23 (1969).

Styles, W. S.

W. D. Chesterman, W. S. Styles, “The Visibility of Targets in a Naval Searchlight Beam,” in Symposium on Searchlights (Illuminating Engineering Society, London, 1948), p. 82.

van Albada, L. E. W.

L. E. W. van Albada, Graphical Design of Optical Systems (Pitman, New York, 1955).

Appl. Opt. (1)

Gen. Elec. Rev. (1)

F. Benford, Gen. Elec. Rev. 26, 231 (1923).

IRIS (1)

R. R. Standel, IRIS 13, 23 (1969).

Opt. Spectra (1)

J. Richter, Opt. Spectra 2 (3), 58 (1968).

Other (5)

L. E. W. van Albada, Graphical Design of Optical Systems (Pitman, New York, 1955).

H. P. Bruegemann, Conic Mirrors (Focal Press, New York, 1968), pp. 21–29.

H. Anders, Thin Films in Optics (Focal Press, New York, 1967), p. 83.

W. D. Chesterman, W. S. Styles, “The Visibility of Targets in a Naval Searchlight Beam,” in Symposium on Searchlights (Illuminating Engineering Society, London, 1948), p. 82.

Reference 4, p. 234.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Low profile beacon optical system with paraboloidal collector.

Fig. 2
Fig. 2

Prototype of beacon.

Fig. 3
Fig. 3

Low profile beacon optical system with ellipsoidal collector.

Fig. 4
Fig. 4

Sealed beam arc lamp.

Fig. 5
Fig. 5

Axial cone and annular cone of angle 2ϕ (far field).

Fig. 6
Fig. 6

Elemental cone zones of aperture 2ϕ (near field).

Fig. 7
Fig. 7

Beacon functioning.

Fig. 8
Fig. 8

Low angle view of beacon.

Fig. 9
Fig. 9

Polar radiant intensity distribution of prototype beacon and sealed beam lamp.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ϕ = I max e - K ϕ 2 ,
K = - ln 0.1 / ϕ D 2 ,
I max = B m A ,
Ω c = 2 ( 1 - cos ϕ )
E C = I C Δ Ω C
E A = E C = I A Δ Ω A = I C Δ Ω C .
Δ Ω A = Δ Ω A 1 + Δ Ω A 2 , I C Δ Ω C = I A 1 Δ Ω A 1 + I A 2 Δ Ω A 2 , I A 1 Δ Ω A 1 = I A 2 Δ Ω A 2 = I C Δ Ω C / 2 , I A 1 = ( I C / 2 ) ( Δ Ω C / Δ Ω A 1 ) , I A 2 = ( I C / 2 ) ( Δ Ω C / Δ Ω A 2 ) ,
I A 1 = ( I C / 2 ) [ Ω C ( ϕ ) / Ω A 1 ( ϕ ) ] , I A 2 = ( I C / 2 ) [ Ω C ( ϕ ) / Ω A 2 ( ϕ ) ] .
Ω C ( ϕ ) = sin ϕ , Ω A 1 ( ϕ ) = sin ( α - ϕ ) , Ω A 2 ( ϕ ) = sin ( α + ϕ ) ,
I A 1 = ( I C / 2 ) [ sin ϕ / sin ( α - ϕ ) ] ,
I A 2 = ( I C / 2 ) [ sin ϕ / sin ( α + ϕ ) ] .
I A 1 = B m A e - K 2 ϕ 2 sin ϕ sin ( α - ϕ ) ,
I A 2 = B m A e - K 2 ϕ 2 sin ϕ sin ( α + ϕ ) .

Metrics