Abstract

In multilayer dielectric mirrors with one or more high reflectance bands in the near-ir and visible regions, large anomalous reflection peaks usually appear in the passbands. Their origin is traced to layer thickness inequality caused by unequal dispersions of the high and low index materials, and the common practice of monitoring layer thicknesses at stop bands. A procedure is described which takes account of the variations in materials dispersion in different coating laboratories, suppresses the anomalous reflection peaks, and locates the high reflection bands at their required wavelengths, with a relatively simple monitoring procedure.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Young, E. G. Cristal, Appl. Opt. 5, 77 (1966).
    [CrossRef] [PubMed]
  2. L. Young, E. G. Cristal, IEEE Trans. Microwave Theory Tech. MTT-14, 75 (1966).
    [CrossRef]
  3. L. Young, Appl. Opt. 6, 297 (1967).
    [CrossRef] [PubMed]
  4. R. S. Sokolova, T. N. Krylova, Opt. Spektrosc. 12, 437 (1962).
  5. E. van Rooyen, E. Theron, Appl. Opt. 8, 832 (1969).
    [CrossRef] [PubMed]
  6. A. Herpin, Compt. Rend. 225, 182 (1947).
  7. L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
    [CrossRef]
  8. P. W. Baumeister, Chap. 20 of Military Handbook 141, October1962 (obtainable from Control Center 550, Frankford Arsenal).
  9. R. G. Smith, Bell Telephone Labs, private communication.
  10. P. W. Baumeister, University of Rochester, private communication.
  11. G. Koppelmann, K. Krebs, Z. Physik 145, 486 (1956).
    [CrossRef]
  12. J. T. Cox, G. Hass, A. Thelen, J. Opt. Soc. Amer. 52, 965 (1962).
    [CrossRef]
  13. J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
    [CrossRef]
  14. P. B. Clapham, Thin Solid Films 4, 291 (1969).
    [CrossRef]

1969 (2)

1968 (1)

J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
[CrossRef]

1967 (1)

1966 (2)

L. Young, E. G. Cristal, Appl. Opt. 5, 77 (1966).
[CrossRef] [PubMed]

L. Young, E. G. Cristal, IEEE Trans. Microwave Theory Tech. MTT-14, 75 (1966).
[CrossRef]

1962 (2)

R. S. Sokolova, T. N. Krylova, Opt. Spektrosc. 12, 437 (1962).

J. T. Cox, G. Hass, A. Thelen, J. Opt. Soc. Amer. 52, 965 (1962).
[CrossRef]

1956 (1)

G. Koppelmann, K. Krebs, Z. Physik 145, 486 (1956).
[CrossRef]

1952 (1)

L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
[CrossRef]

1947 (1)

A. Herpin, Compt. Rend. 225, 182 (1947).

Baumeister, P. W.

P. W. Baumeister, Chap. 20 of Military Handbook 141, October1962 (obtainable from Control Center 550, Frankford Arsenal).

P. W. Baumeister, University of Rochester, private communication.

Burgiel, J. C.

J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
[CrossRef]

Chen, Y. S.

J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
[CrossRef]

Clapham, P. B.

P. B. Clapham, Thin Solid Films 4, 291 (1969).
[CrossRef]

Cox, J. T.

J. T. Cox, G. Hass, A. Thelen, J. Opt. Soc. Amer. 52, 965 (1962).
[CrossRef]

Cristal, E. G.

L. Young, E. G. Cristal, Appl. Opt. 5, 77 (1966).
[CrossRef] [PubMed]

L. Young, E. G. Cristal, IEEE Trans. Microwave Theory Tech. MTT-14, 75 (1966).
[CrossRef]

Epstein, L. I.

L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
[CrossRef]

Hass, G.

J. T. Cox, G. Hass, A. Thelen, J. Opt. Soc. Amer. 52, 965 (1962).
[CrossRef]

Herpin, A.

A. Herpin, Compt. Rend. 225, 182 (1947).

Koppelmann, G.

G. Koppelmann, K. Krebs, Z. Physik 145, 486 (1956).
[CrossRef]

Krebs, K.

G. Koppelmann, K. Krebs, Z. Physik 145, 486 (1956).
[CrossRef]

Krylova, T. N.

R. S. Sokolova, T. N. Krylova, Opt. Spektrosc. 12, 437 (1962).

Smith, R. G.

R. G. Smith, Bell Telephone Labs, private communication.

Smolinsky, G.

J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
[CrossRef]

Sokolova, R. S.

R. S. Sokolova, T. N. Krylova, Opt. Spektrosc. 12, 437 (1962).

Thelen, A.

J. T. Cox, G. Hass, A. Thelen, J. Opt. Soc. Amer. 52, 965 (1962).
[CrossRef]

Theron, E.

van Rooyen, E.

Vratny, F.

J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
[CrossRef]

Young, L.

Appl. Opt. (3)

Compt. Rend. (1)

A. Herpin, Compt. Rend. 225, 182 (1947).

IEEE Trans. Microwave Theory Tech. (1)

L. Young, E. G. Cristal, IEEE Trans. Microwave Theory Tech. MTT-14, 75 (1966).
[CrossRef]

J. Electrochem. Soc. (1)

J. C. Burgiel, Y. S. Chen, F. Vratny, G. Smolinsky, J. Electrochem. Soc. 115, 729 (1968).
[CrossRef]

J. Opt. Soc. Amer. (2)

J. T. Cox, G. Hass, A. Thelen, J. Opt. Soc. Amer. 52, 965 (1962).
[CrossRef]

L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
[CrossRef]

Opt. Spektrosc. (1)

R. S. Sokolova, T. N. Krylova, Opt. Spektrosc. 12, 437 (1962).

Thin Solid Films (1)

P. B. Clapham, Thin Solid Films 4, 291 (1969).
[CrossRef]

Z. Physik (1)

G. Koppelmann, K. Krebs, Z. Physik 145, 486 (1956).
[CrossRef]

Other (3)

P. W. Baumeister, Chap. 20 of Military Handbook 141, October1962 (obtainable from Control Center 550, Frankford Arsenal).

R. G. Smith, Bell Telephone Labs, private communication.

P. W. Baumeister, University of Rochester, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured transmittance of a seventeen-layer ZnS: ThF4 stack on fused silica, S, L (HL)8, A at 2.06 μ, deposited as a three-quarter-wave stack at 0.68 μ.

Fig. 2
Fig. 2

Computed reflectance spectrum of a ZnS: ThF4 stack on fused silica, S, L, (HL)8, A at 2.06 μ, with index dispersion of ZnS represented by a polynomial expression.

Fig. 3
Fig. 3

Computed reflectance peaks in the 4σ1 passband of dispersionless low pass filters S, ( H ˜ / 2 , L ˜ , H ˜ / 2 ) m, A for small departures from layer-thickness equality. For m ≥ 5, peaks lie within 1.5% of midband frequency.

Fig. 4
Fig. 4

Computed reflectance peaks in the 2σ1 passband of dispersionless high pass filters S, ( L ˜ / 2 , H ˜ , L ˜ / 2 , ) m, A for small departures from layer-thickness equality. Peaks lie within 1% of midband frequency.

Fig. 5
Fig. 5

Measured transmittance of low pass filter stack of ZnS:ThF4 on fused silica, described by S, L (2H, 4L, 2L) L, A at the monitor wavelength of 0.527 μ. (Arrows indicate estimated wavelengths of stopband centers.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ s + σ i = σ p
σ i ~ σ s ~ σ p / 2 ,
σ i ~ σ s / 3 ~ σ p / 4 ,
QWOT = 4 n d = λ 1 .
S , L / 4 ( H / 2 , L , H / 2 ) m L / 4 , A at σ 1 ,
S , L ( 2 H , 4 L , 2 H ) m L , A at λ 4 .

Metrics